Answer:
![m \times H=\left[\begin{array}{c c c}\boxed{-9} & \boxed{36} & \boxed{-\dfrac{9}{2}}\end{array}\right]](https://tex.z-dn.net/?f=m%20%5Ctimes%20H%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D%5Cboxed%7B-9%7D%20%26%20%5Cboxed%7B36%7D%20%26%20%5Cboxed%7B-%5Cdfrac%7B9%7D%7B2%7D%7D%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
<u>Calculate the value of m</u>
Given:
![3\left[\begin{array}{c c}-1 & 2 \\4 & 8\end{array}\right]=\dfrac{2}{3}m \times \left[\begin{array}{c c}-1 & 2 \\4 & 8\end{array}\right]](https://tex.z-dn.net/?f=3%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%7D-1%20%26%202%20%5C%5C4%20%26%208%5Cend%7Barray%7D%5Cright%5D%3D%5Cdfrac%7B2%7D%7B3%7Dm%20%5Ctimes%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%7D-1%20%26%202%20%5C%5C4%20%26%208%5Cend%7Barray%7D%5Cright%5D)
Therefore:



<u>Calculate the value of H</u>
Given:
![\left(H+ \left[\begin{array}{c c c}1 & 4 & -2\end{array}\right]\right)+\left[\begin{array}{c c c}3 & 2 & -6\end{array}\right]=\left[\begin{array}{c c c}-2 & 8 & -1\end{array}\right]+\left(\left[\begin{array}{c c c}1 & 4 & -2\end{array}\right]+\left[\begin{array}{c c c}3 & 2 & -6\end{array}\right]\right)](https://tex.z-dn.net/?f=%5Cleft%28H%2B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D1%20%26%204%20%26%20-2%5Cend%7Barray%7D%5Cright%5D%5Cright%29%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D3%20%26%202%20%26%20-6%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D-2%20%26%208%20%26%20-1%5Cend%7Barray%7D%5Cright%5D%2B%5Cleft%28%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D1%20%26%204%20%26%20-2%5Cend%7Barray%7D%5Cright%5D%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D3%20%26%202%20%26%20-6%5Cend%7Barray%7D%5Cright%5D%5Cright%29)
Therefore:
![\implies H= \left[\begin{array}{c c c}-2 & 8 & -1\end{array}\right]](https://tex.z-dn.net/?f=%5Cimplies%20H%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D-2%20%26%208%20%26%20-1%5Cend%7Barray%7D%5Cright%5D)
<u />
<u>Calculating m × H</u>
<u />
<u />![\implies m \times H=\dfrac{9}{2} \times \left[\begin{array}{c c c}-2 & 8 & -1\end{array}\right]](https://tex.z-dn.net/?f=%5Cimplies%20m%20%5Ctimes%20H%3D%5Cdfrac%7B9%7D%7B2%7D%20%5Ctimes%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D-2%20%26%208%20%26%20-1%5Cend%7Barray%7D%5Cright%5D)
<u />![\implies m \times H=\left[\begin{array}{c c c}\dfrac{9}{2}(-2) & \dfrac{9}{2}(8) & \dfrac{9}{2}(-1)\end{array}\right]](https://tex.z-dn.net/?f=%5Cimplies%20m%20%5Ctimes%20H%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%20c%20c%7D%5Cdfrac%7B9%7D%7B2%7D%28-2%29%20%26%20%5Cdfrac%7B9%7D%7B2%7D%288%29%20%26%20%5Cdfrac%7B9%7D%7B2%7D%28-1%29%5Cend%7Barray%7D%5Cright%5D)
<u />
I don’t know what I gotta about it wasn’t the best thing to say about
The area of any quad = the base* height
for q 1:
the base=12 in
the height= 3 in
then the area = 12*3 = 36 sq in
for q 2:
the base= 14 in
the height = 4.5 in
then the area =4.5*14 =63
The largest sum of three numbers that meet at a corner is 15
<h3>How to determine the largest sum?</h3>
The number cube that completes the question is added as an attachment
The largest number in the number cube is 6.
On the number cube, the next largest numbers share the same corner with the number 6
So, the largest set of numbers on the cube are 6, 5, 4
Add the numbers:
Sum = 6 + 5 + 4
Evaluate
Sum = 15
Hence, the largest sum of three numbers that meet at a corner is 15
Read more about number cubes at:
brainly.com/question/474968
#SPJ1