Answer:
a) 28,662 cm² max error
0,0111 relative error
b) 102,692 cm³ max error
0,004 relative error
Step-by-step explanation:
Length of cicumference is: 90 cm
L = 2*π*r
Applying differentiation on both sides f the equation
dL = 2*π* dr ⇒ dr = 0,5 / 2*π
dr = 1/4π
The equation for the volume of the sphere is
V(s) = 4/3*π*r³ and for the surface area is
S(s) = 4*π*r²
Differentiating
a) dS(s) = 4*2*π*r* dr ⇒ where 2*π*r = L = 90
Then
dS(s) = 4*90 (1/4*π)
dS(s) = 28.662 cm² ( Maximum error since dr = (1/4π) is maximum error
For relative error
DS´(s) = (90/π) / 4*π*r²
DS´(s) = 90 / 4*π*(L/2*π)² ⇒ DS(s) = 2 /180
DS´(s) = 0,0111 cm²
b) V(s) = 4/3*π*r³
Differentiating we get:
DV(s) = 4*π*r² dr
Maximum error
DV(s) = 4*π*r² ( 1/ 4*π*) ⇒ DV(s) = (90)² / 8*π²
DV(s) = 102,692 cm³ max error
Relative error
DV´(v) = (90)² / 8*π²/ 4/3*π*r³
DV´(v) = 1/240
DV´(v) = 0,004
Answer:
I think its aas
Step-by-step explanation:
Answer: The answer is C, 4 to the 21st over 5 to the 6th power.
The expected length of code for one encoded symbol is

where
is the probability of picking the letter
, and
is the length of code needed to encode
.
is given to us, and we have

so that we expect a contribution of

bits to the code per encoded letter. For a string of length
, we would then expect
.
By definition of variance, we have
![\mathrm{Var}[L]=E\left[(L-E[L])^2\right]=E[L^2]-E[L]^2](https://tex.z-dn.net/?f=%5Cmathrm%7BVar%7D%5BL%5D%3DE%5Cleft%5B%28L-E%5BL%5D%29%5E2%5Cright%5D%3DE%5BL%5E2%5D-E%5BL%5D%5E2)
For a string consisting of one letter, we have

so that the variance for the length such a string is

"squared" bits per encoded letter. For a string of length
, we would get
.