Recall some identities:
tan(x) = sin(x) / cos(x)
cos(x + y) = cos(x) cos(y) - sin(x) sin(y)
cos(x - y) = cos(x) cos(y) + sin(x) sin(y)
sin(x - y) = sin(x) cos(y) - cos(x) sin(y)
This means we have
• cos²(90° - x) = [cos(90°) cos(x) + sin(90°) sin(x)]²
… = sin²(x)
• tan(180° - x) = sin(180° - x) / cos(180° - x)
… = [sin(180°) cos(x) - cos(180°) sin(x)] / [cos(180°) cos(x) + sin(180°) sin(x)]
… = sin(x) / (-cos(x))
… = -tan(x)
(and we also get sin(180° - x) = sin(x))
• cos(180° + x) = cos(180°) cos(x) - sin(180°) sin(x)
… = -cos(x)
So, the given expression reduces to
sin²(x) (-tan(x)) (-cos(x)) / sin(x) = sin²(x)
since tan(x) and cos(x)/sin(x) = 1/tan(x) will cancel.