Answer:
The rise and fall of ocean tides
Explanation:
What do you need help on the sentences?
Answer: Twice the previous time would be taken to reach the same speed v with the puck of mass 2m.
Explanation:
Let a Force pushes the hockey puck of mass m.
Then acceleration, a= \frac{F}{m}a=mF
From the equation of motion,
\begin{gathered}\➪ v=u+at\\ v=0+\frac{F}{m}\Delta t\end{gathered}⇒v=u+atv=0+mFΔt ......(1)
In the second case, when mass is 2m, then acceleration,
a'=\frac{F}{2m}a′=2mF
and t' is the time taken.
The final speed is v,
\begin{gathered}\➪ v=0+ a't'\\ \➪ \frac {F}{m}\Delta t=\frac{F}{2m}t'\\ \➪ t'= 2\Delta t\end{gathered}⇒v=0+a′t′⇒mFΔt=2mFt′⇒t′=2Δt using equation (1)
Hence, it would take two times the previous amount of time to push the pluck of double mass.
<em><u> </u></em><em><u>I</u></em><em><u> </u></em><em><u>hope</u></em><em><u> </u></em><em><u>this</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>understandable</u></em><em><u> </u></em><em><u>and</u></em><em><u> </u></em><em><u>if</u></em><em><u> </u></em><em><u>my</u></em><em><u> </u></em><em><u>answer</u></em><em><u> </u></em><em><u>helped</u></em><em><u> </u></em><em><u>you</u></em><em><u> </u></em><em><u>please</u></em><em><u> </u></em><em><u>can</u></em><em><u> </u></em><em><u>you</u></em><em><u> </u></em><em><u>give</u></em><em><u> </u></em><em><u>me</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>brainliest</u></em><em><u> </u></em><em><u>its</u></em><em><u> </u></em><em><u>will</u></em><em><u> </u></em><em><u>really</u></em><em><u> </u></em><em><u>help</u></em><em><u> </u></em><em><u>me</u></em><em><u> </u></em><em><u>and</u></em><em><u> </u></em><em><u>thank</u></em><em><u> </u></em><em><u>you</u></em><em><u> </u></em><em><u>have</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>nice</u></em><em><u> </u></em><em><u>day</u></em><em><u>!</u></em><em><u>!</u></em>
The garter snakes are distinguished by the three stripes running the length of their body and can often be found in forests, places that are even close to water bodies, and almost any place, even in holes.