Ans is 3.5,pls check it again
Answer:
a. the output (y) values of the relation
Step-by-step explanation:
The range of a function is the set of all possible values that a dependent variable would take.
Therefore, it is the output values of the relation.
Answer:
45
Step-by-step explanation:
Answer:
The answer is below
Step-by-step explanation:
A linear graph has an equation of the form:
y = mx + b,
where y and x are variables, m is the slope (rate of change) of the graph and b is the y intercept (value of y when x is 0).
Given that:
2x -2y = 4 , 3x + 2y = 6
The matrix form of the equation is:
AX = B
![A=\left[\begin{array}{cc}2&-2\\3&2\end{array}\right] ,X=\left[\begin{array}{c}x\\y\end{array}\right] ,B=\left[\begin{array}{c}4\\6\end{array}\right] \\\\Therefore:\\\\\left[\begin{array}{cc}2&-2\\3&2\end{array}\right] \left[\begin{array}{c}x\\y\end{array}\right] =\left[\begin{array}{c}4\\6\end{array}\right] \\\\\left[\begin{array}{c}x\\y\end{array}\right] =\left[\begin{array}{cc}2&-2\\3&2\end{array}\right]^{-1} \left[\begin{array}{c}4\\6\end{array}\right] \\\\](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%26-2%5C%5C3%262%5Cend%7Barray%7D%5Cright%5D%20%2CX%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%20%2CB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D4%5C%5C6%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5CTherefore%3A%5C%5C%5C%5C%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%26-2%5C%5C3%262%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D4%5C%5C6%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%26-2%5C%5C3%262%5Cend%7Barray%7D%5Cright%5D%5E%7B-1%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D4%5C%5C6%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C)
Answer: D) a+bi
Where both a and b are real numbers.
In your textbook, you might see
to indicate that they are real numbers.
An example would be 7+13i, where a = 7 and b = 13.