4.5x5=22.5
not sure if this is right, but hope it helps
Answer:
P(X 74) = 0.3707
Step-by-step explanation:
We are given that the score of golfers for a particular course follows a normal distribution that has a mean of 73 and a standard deviation of 3.
Let X = Score of golfers
So, X ~ N()
The z score probability distribution is given by;
Z = ~ N(0,1)
where, = population mean = 73
= standard deviation = 3
So, the probability that the score of golfer is at least 74 is given by = P(X 74)
P(X 74) = P( ) = P(Z 0.33) = 1 - P(Z < 0.33)
= 1 - 0.62930 = 0.3707
Therefore, the probability that the score of golfer is at least 74 is 0.3707 .
Answer:
see explanation
Step-by-step explanation:
The solutions to the systems of equations are at the points of intersection of the 2 graphed functions.
1
There are 2 points of intersection , so 2 solutions at
(0, - 3 ) and (4, 5 )
2
There is 1 point of intersection, so 1 solution at
(- 2, 5 )
3
There are no points of intersection , so no solution
Make ur pizza- and then reply with what u put so iv u need help with finding a profit
Answer:
The solution to the box is
a = 2.1
b = 5.9
c = 0.9
d = 10
Step-by-step explanation:
To answer the equation, we simply name the boxes a,b,c and d.
Such that
a + b = 8 ---- (1)
b - c = 5 ------ (2)
d * c = 9 ------ (3)
a * d = 21 ------- (4)
Make d the subject of formula in (3)
d * c = 9 ---- Divide both sides by c
d * c/c = 9/c
d = 9/c
Substitute 9/c for d in (4)
a * d = 21
a * 9/c = 21
Multiply both sides by c
a * 9/c * c = 21 * c
a * 9 = 21 * c
9a = 21c ------ (5)
Make b the subject of formula in (1)
a + b = 8
b = 8 - a
Substitute 8 - a for b in (2)
b - c = 5
8 - a - c = 5
Collect like terms
-a - c = 5 - 8
-a - c = -3
Multiply both sides by -1
-1(-a - c) = -1 * -3
a + c = 3
Make a the subject of formula
a = 3 - c
Substitute 3 - c for a in (5)
9a = 21c becomes
9(3 - c) = 21c
Open bracket
27 - 9c = 21c
Collect like terms
27 = 21c + 9c
27 = 30c
Divide both sides by 30
27/30 = 30c/30
27/30 = c
0.9 = c
c = 0.9
Recall that a = 3 - c
So, a = 3 - 0.9
a = 2.1
From (1)
a + b = 8
2.1 + b = 8
b = 8 - 2.1
b = 5.9
From (3)
d * c = 9
Substitute 0.9 for c
d * 0.9 = 9
Divide both sides by 0.9
d * 0.9/0.9 = 9/0.9
d = 9/0.9
d = 10.
Hence, the solution to the box is
a = 2.1
b = 5.9
c = 0.9
d = 10