Answer:
5.16
Step-by-step explanation:
Since after x=3, value of y starts decreasing for increasing values of x, let's choose. Also we need to find f(x) for x=3.4
x=3,4,5 and f(x)=7,3,1 to find lagrange polynomial
P(x)= ((x-x2)(x-x3)y1)/((x1-x2)(x1-x3) + ((x-x1)(x-x3)y2)/((x2-x1)(x2-x3) + ((x-x1)(x-x2)y3)/((x3-x1)(x3-x2)
P(x)= ((x-4)(x-5)7)/((3-4)(3-5)) + ((x-3)(x-5)3)/((4-3)(4-5)) + ((x-3)(x-4)1)/((5-3)(5-4))
P(x)= x² -11x+31
P(3.4)= 5.16
<em>The </em><em>answer </em><em>of </em><em>quest</em><em>ion</em><em> </em><em>no.1</em><em> </em><em> </em><em>and </em><em>2</em><em> </em><em>is </em><em>1.</em>
<em>Well</em><em>,</em><em>the</em><em> </em><em>quest</em><em>ion</em><em> </em><em>of</em><em> </em><em>1</em><em> </em><em>and </em><em>2</em><em> </em><em>are</em><em> </em><em>same</em><em>.</em>
<em>Look </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em>
<em>The</em><em> </em><em>answer</em><em> </em><em>of</em><em> </em><em>question</em><em> </em><em>n</em><em>o</em><em> </em><em>3</em><em> </em><em>is</em><em> </em><em>7</em><em>.</em>
<em>Hope </em><em>it</em><em> </em><em>helps</em><em>.</em><em>.</em><em>.</em>
<em>Good</em><em> </em><em>luck</em><em> </em><em>on</em><em> </em><em>your</em><em> </em><em>assignment</em>
Answer:
35 degrees
Step-by-step explanation:
The sum of all angles in a triangle equals to 180
To find angle z, just subtract 55 and 90 from 180
180-55-90= 35
Angle z = 35 degrees
Hope this helps
3/4 is as simple as it gets 5/10- 1/2
Circle: x^2+y^2=121=11^2 => circle with radius 11 and centred on origin.
g(x)=-2x+12 (from given table, find slope and y-intercept)
We can see from the graphics that g(x) will be almost tangent to the circle at (0,11), and that both intersection points will be at x>=11.
To show that this is the case,
substitute g(x) into the circle
x^2+(-2x+12)^2=121
x^2+4x^2-2*2*12x+144-121=0
5x^2-48x+23=0
Solve using the quadratic formula,
x=(48 ± √ (48^2-4*5*23) )/10
=0.5058 or 9.0942
So both solutions are real and both have positive x-values.