Yes, so it gets the right amount in the paint can and doesn't make a mess.
L=x
b=x/8
2(l+b)=126
2(x+x/8)=126
2(9x/2)=126
9x/2=63
9x=126
×=14 length
x/8=14/8
breadth =1.75 inches
Answer: You'll have 10 nickels and 18 dimes.
Step-by-step explanation:
Its a guessing question.
10 nickles = .50
18 dimes = $1.80
$1.80 + .50= 2.30
Answer:
The answer is "
The sequence converges to infinity.
"
Step-by-step explanation:
Given:

Denominator
Numerator

![\bf \lim\limits_{x\to \infty}~\left( \cfrac{1}{8} \right)^x\implies \lim\limits_{x\to \infty}~\cfrac{1^x}{8^x}\\\\[-0.35em] ~\dotfill\\\\ \stackrel{x = 10}{\cfrac{1^{10}}{8^{10}}}\implies \cfrac{1}{8^{10}}~~,~~ \stackrel{x = 1000}{\cfrac{1^{1000}}{8^{1000}}}\implies \cfrac{1}{8^{1000}}~~,~~ \stackrel{x = 100000000}{\cfrac{1^{100000000}}{8^{100000000}}}\implies \cfrac{1}{8^{100000000}}~~,~~ ...](https://tex.z-dn.net/?f=%5Cbf%20%5Clim%5Climits_%7Bx%5Cto%20%5Cinfty%7D~%5Cleft%28%20%5Ccfrac%7B1%7D%7B8%7D%20%5Cright%29%5Ex%5Cimplies%20%5Clim%5Climits_%7Bx%5Cto%20%5Cinfty%7D~%5Ccfrac%7B1%5Ex%7D%7B8%5Ex%7D%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7Bx%20%3D%2010%7D%7B%5Ccfrac%7B1%5E%7B10%7D%7D%7B8%5E%7B10%7D%7D%7D%5Cimplies%20%5Ccfrac%7B1%7D%7B8%5E%7B10%7D%7D~~%2C~~%20%5Cstackrel%7Bx%20%3D%201000%7D%7B%5Ccfrac%7B1%5E%7B1000%7D%7D%7B8%5E%7B1000%7D%7D%7D%5Cimplies%20%5Ccfrac%7B1%7D%7B8%5E%7B1000%7D%7D~~%2C~~%20%5Cstackrel%7Bx%20%3D%20100000000%7D%7B%5Ccfrac%7B1%5E%7B100000000%7D%7D%7B8%5E%7B100000000%7D%7D%7D%5Cimplies%20%5Ccfrac%7B1%7D%7B8%5E%7B100000000%7D%7D~~%2C~~%20...)
now, if we look at the values as "x" races fast towards ∞, we can as you see above, use the values of 10, 1000, 100000000 and so on, as the value above oddly enough remains at 1, it could have been smaller but it's constantly 1 in this case, the value at the bottom is ever becoming a larger and larger denominator.
let's recall that the larger the denominator, the smaller the fraction, so the expression is ever going towards a tiny and tinier and really tinier fraction, a fraction that is ever approaching 0.