Answer:
Puesto que se conocen dos ángulos seguidos y un lado adyacente tanto en uno como en otro triángulo, se debe emplear el criterio Ángulo-Lado-Ángulo (ALA) para determinar que los triángulos citados en el enunciado son congruentes.
Step-by-step explanation:
Puesto que se conocen dos ángulos seguidos y un lado adyacente tanto en uno como en otro triángulo, se debe emplear el criterio Ángulo-Lado-Ángulo (ALA) para determinar que los triángulos citados en el enunciado son congruentes.
Hi there!
First, let's find the slope of the two points using the slope formula (y2 - y1 / x2 - x1).
S = 4 - 2 / 3 - 5
S = 2 / -2
S = -1
Next, we'll plug in the slope and a point into point-slope form (y - y1 = s(x - x1)) in order to find an equation. I will show the work using both points, which will result in two different equations.
(2,5)
y - 5 = -1(x - 2)
y - 5 = -x + 2
y = -x + 7
(4,3)
y - 3 = -1(x - 4)
y - 3 = -x + 4
y = -x + 7
The two equations came out the same! Which is completely okay, and happens sometimes.
Hope this helps!! :)
If there's anything else that you're needing help with, don't be afraid to reach out!
Answer:
b c e
Step-by-step explanation:
<span><span>Step by step :
6x</span>−<span>42x</span></span><span>
=<span><span><span>6x</span>+</span>−<span>42x</span></span></span>
<span>=<span><span>6x</span>+<span>−<span>42x</span></span></span></span><span>
=<span>(<span><span>6x</span>+<span>−<span>42x</span></span></span>)</span></span><span>
=<span>−<span>36x</span></span></span>
Hoped I helped!
The last two would be your answer :)