Answer:
The graph that has the points (2,4) and (4,8) should be the answer.
Step-by-step explanation:
This is the answer because if you see the ratio 2:4, that means that for every 2 offense cards there are 4 defense cards. As you continue to go up it would be (4,8), (6,12), (8,16), and so forth.
Answer:
(1, 4) and (1,3), because they have the same x-value
Step-by-step explanation:
For a relation to be regarded as a function, there should be no two y-values assigned to an x-value. However, two different x-values can have the same y-values.
In the relation given in the equation, the ordered pairs (1,4) and (1,3), prevent the relation from being a function because, two y-values were assigned to the same x-value. x = 1, is having y = 4, and 3 respectively.
Therefore, the relation is not a function anymore if both ordered pairs are included.
<em>The ordered pairs which make the relation not to be a function are: "(1, 4) and (1,3), because they have the same x-value".</em>
Grayson did not simplify the question
Answer:
∠1 - 40°
Step-by-step explanation:
∠1 - 40°
b/c it's a right triangle and we have two angles given, 50° and 90°. Add them and subtract by 180° and get 40°.
∠2 - 140°
b/c an exterior (outside) angle is equal to the two most isolated / farthest angles added. The two most is angles are 105° and 35°, add them and get 140°.
∠3 - 40°
b/c ∠'s 1 and 3 are vertical angles meaning they're equal so since ∠1 is 40°, so is ∠3.
∠4 -
b/c ∠' s 2 and 4 are vertical angles meaning they're equal so since ∠2 is 140°, so is ∠4.
∠5 - 35°
b/c we have two angles, 105° and 40°. Add them and subtract by 180° and get 35°.
~~
I hope that helps you out!!