Answer:
cos(θ)
Step-by-step explanation:
Para una función f(x), la derivada es el límite de
h
f(x+h)−f(x)
, ya que h va a 0, si ese límite existe.
dθ
d
(sin(θ))=(
h→0
lim
h
sin(θ+h)−sin(θ)
)
Usa la fórmula de suma para el seno.
h→0
lim
h
sin(h+θ)−sin(θ)
Simplifica sin(θ).
h→0
lim
h
sin(θ)(cos(h)−1)+cos(θ)sin(h)
Reescribe el límite.
(
h→0
lim
sin(θ))(
h→0
lim
h
cos(h)−1
)+(
h→0
lim
cos(θ))(
h→0
lim
h
sin(h)
)
Usa el hecho de que θ es una constante al calcular límites, ya que h va a 0.
sin(θ)(
h→0
lim
h
cos(h)−1
)+cos(θ)(
h→0
lim
h
sin(h)
)
El límite lim
θ→0
θ
sin(θ)
es 1.
sin(θ)(
h→0
lim
h
cos(h)−1
)+cos(θ)
Para calcular el límite lim
h→0
h
cos(h)−1
, primero multiplique el numerador y denominador por cos(h)+1.
(
h→0
lim
h
cos(h)−1
)=(
h→0
lim
h(cos(h)+1)
(cos(h)−1)(cos(h)+1)
)
Multiplica cos(h)+1 por cos(h)−1.
h→0
lim
h(cos(h)+1)
(cos(h))
2
−1
Usa la identidad pitagórica.
h→0
lim
−
h(cos(h)+1)
(sin(h))
2
Reescribe el límite.
(
h→0
lim
−
h
sin(h)
)(
h→0
lim
cos(h)+1
sin(h)
)
El límite lim
θ→0
θ
sin(θ)
es 1.
−(
h→0
lim
cos(h)+1
sin(h)
)
Usa el hecho de que
cos(h)+1
sin(h)
es un valor continuo en 0.
(
h→0
lim
cos(h)+1
sin(h)
)=0
Sustituye el valor 0 en la expresión sin(θ)(lim
h→0
h
cos(h)−1
)+cos(θ).
cos(θ)
y = - 4x + - 8 is equation of slope-intercept form.
What is in slope-intercept form?
- Given the slope of the line and the intercept it forms with the y-axis, one of the mathematical forms used to derive the equation of a straight line is called the slope intercept form.
- Y = mx + b, where m is the slope of the straight line and b is the y-intercept, is the slope intercept form.
the equation of slope - intercept form
y = mx + c
( -1 , -4 ) is point shown in graph
slope = -y/x
= - ( -4)/-1 = 4/-1 = -4
- 4 = -4 * - 1 + c
- 4 = 4 + c
c = - 4 - 4 = - 8
put value of c in the equation of slope - intercept form
y = - 4x + - 8
Learn more about slope-intercept form
brainly.com/question/9682526
#SPJ13
Answer:
there are 13250 milliliters
Answer:
x = 7
Step-by-step explanation:
Note that the line of length 2x - 6 is a mid- line segment as it bisects the 2 sides of the triangle. Accordingly it is half the length of the third side, that is
2x - 6 = 8 ( add 6 to both sides )
2x = 14 ( divide both sides by 2 )
x = 7
Answer: 2/3x-12=48
remember that less than means it goes to the back