The formula for arc length is S = ∅*r.
Where S is the arc length, ∅ is the angle measure in radians, and r is the radius of the circle.
S = *1
S =
The equation represents the magnitude of an earthquake that is 10 times more intense than a standard earthquake is
.
Given
The magnitude, M, of an earthquake is defined to be M = log StartFraction I Over S EndFraction, where I is the intensity of the earthquake (measured by the amplitude of the seismograph wave) and S is the intensity of a "standard" earthquake, which is barely detectable.
<h3>The magnitude of an earthquake</h3>
The magnitude of an earthquake is a measure of the energy it releases.
For an earthquake with 1,000 times more intense than a standard earthquake.
The equation represents the magnitude of an earthquake that is 10 times more intense than a standard earthquake is;

Hence, the equation represents the magnitude of an earthquake that is 10 times more intense than a standard earthquake is
.
To know more about the magnitude of earthquakes click the link given below.
brainly.com/question/1337665
8.9
The equation for the grain size is expressed as the equality:
Nm(M/100)^2 = 2^(n-1)
where
Nm = number of grains per square inch at magnification M.
M = Magnification
n = ASTM grain size number
Let's solve for n, then substitute the known values and calculate.
Nm(M/100)^2 = 2^(n-1)
log(Nm(M/100)^2) = log(2^(n-1))
log(Nm) + 2*log(M/100) = (n-1) * log(2)
(log(Nm) + 2*log(M/100))/log(2) = n-1
(log(Nm) + 2*log(M/100))/log(2) + 1 = n
(log(33) + 2*log(270/100))/log(2) + 1 = n
(1.51851394 + 2*0.431363764)/0.301029996 + 1 = n
(1.51851394 + 0.862727528)/0.301029996 + 1 = n
2.381241468/0.301029996 + 1 = n
7.910312934 + 1 = n
8.910312934 = n
So the ASTM grain size number is 8.9
If you want to calculate the number of grains per square inch, you'd use the
same formula with M equal to 1. So:
Nm(M/100)^2 = 2^(n-1)
Nm(1/100)^2 = 2^(8.9-1)
Nm(1/10000) = 2^7.9
Nm(1/10000) = 238.8564458
Nm = 2388564.458
Or about 2,400,000 grains per square inch.
Answer:
12 cm
Step-by-step explanation:
First, we find the scale factor from cone S to cone T.
ratio of volumes = (vol of T)/(vol of S) = (6144 pi cm^3)/(768 pi cm^3) = 8
The ratio of the volumes is 8:1
The scale factor, which is the ratio of linear dimensions (height, radius, etc.), is the cubic root of the ratio of the volumes.
scale factor = cubic root of 8 = 2
The height of cube T is 24 cm, so the height of cube S is 24 cm/2 = 12 cm.
You will have 40 minutes before it it’s 100% loaded