Answer:
true
Explanation:
the biosphere takes a huge part of the earth
- ATP supplies energy for cellular activities by releasing one of the phosphate group in its molecule
- Cellular activities in living organisms make use of ATP as source of energy
<h3>What is ATP?</h3>
ATP stands for Adenosine triphosphate and it is an energy carrier molecule in living cells of an organism.
The ATP molecule is made up of three components namely;
- Nitrogenous base
- 3 Phosphate groups
- Five carbon sugar
The ATP molecule gains one phosphate group when it stores energy and loses one when it releases energy.
Learn more about ATP at: brainly.com/question/14637256
#SPJ1
Answer:
Chloroplast of the plant cell.
Explanation:
Answer:
(A) It prevents electron flow from the iron-sulfur centers in complex 1 to the ubiquinone. Due to reduction in electron transfer rate, there is a decrease in the production of ATP which is dangerous for some insects and fish over time.
(B) It also prevents electron flow from cytochrome b to cytochrome c1 at the complex III which leads to QH2 accumulation. If oxidized Q is not present, these is alteration of electron flow and the production of ATP is altered.
(C) Rotenone only prevent electron transfer into the chain at Complex 1 but it does not affect electron transfer at Complex II. Although there is slow ETC, it does not stop completely. However, Antimycin A prevents the oxidation of QH2, the final electron acceptor crom complex I and complex II. Thereby, stopping the production of both ETC and ATP. It can be concluded that antimycin A is a more potent poison.
Explanation:
Rotenone prevents electron flow from the iron-sulfur centers in complex 1 to the ubiquinone. Due to a reduction in electron transfer rate, there is a decrease in the production of ATP which is dangerous for some insects and fish over time. Antimycin A also prevents electron flow from cytochrome b to cytochrome c1 at the complex III which leads to QH2 accumulation. If oxidized Q is not present, there is an alteration of electron flow and the production of ATP is altered. Antimycin A is more potent than rotenone.