B
Step-by-step explanation:
it is the only one that has angles that are right next to eachother!
is simply the difference of both amounts, but firstly let's convert the mixed fractions to improper, and subtract.
![\bf \stackrel{mixed}{4\frac{1}{2}}\implies \cfrac{4\cdot 2+1}{2}\implies \stackrel{improper}{\cfrac{9}{2}} \\\\\\ \stackrel{mixed}{6\frac{7}{16}}\implies \cfrac{6\cdot 16+7}{16}\implies \stackrel{improper}{\cfrac{103}{16}} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \stackrel{Jessie}{\cfrac{103}{16}}-\stackrel{Bryce}{\cfrac{9}{2}}\implies \stackrel{\textit{our LCD is 16}}{\cfrac{(1)103-(8)9}{16}}\implies \cfrac{103-72}{16}\implies \cfrac{31}{16}\implies 1\frac{15}{16}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7Bmixed%7D%7B4%5Cfrac%7B1%7D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B4%5Ccdot%202%2B1%7D%7B2%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B9%7D%7B2%7D%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Cstackrel%7Bmixed%7D%7B6%5Cfrac%7B7%7D%7B16%7D%7D%5Cimplies%20%5Ccfrac%7B6%5Ccdot%2016%2B7%7D%7B16%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B103%7D%7B16%7D%7D%0A%5C%5C%5C%5C%5B-0.35em%5D%0A%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%0A%5Cstackrel%7BJessie%7D%7B%5Ccfrac%7B103%7D%7B16%7D%7D-%5Cstackrel%7BBryce%7D%7B%5Ccfrac%7B9%7D%7B2%7D%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bour%20LCD%20is%2016%7D%7D%7B%5Ccfrac%7B%281%29103-%288%299%7D%7B16%7D%7D%5Cimplies%20%5Ccfrac%7B103-72%7D%7B16%7D%5Cimplies%20%5Ccfrac%7B31%7D%7B16%7D%5Cimplies%201%5Cfrac%7B15%7D%7B16%7D)
First pick one that turns out to be a positive or negative
9514 1404 393
Answer:
x ≈ {-2.80176, -0.339837}
Step-by-step explanation:
Write in terms of sine and cosine:
sec(x) -5tan(x) -3cos(x) = 0 . . . . . . given, subtract 3cos(x)
1/cos(x) -5sin(x)/cos(x) -3cos(x) = 0
Multiply by cos(x). (Note, cos(x) ≠ 0.)
1 -5sin(x) -3cos(x)² = 0
Use the trig identity to write in terms of sin(x).
1 -5sin(x) -3(1 -sin²(x)) = 0
3sin(x)² -5sin(x) -2 = 0 . . . . . . . . quadratic in sin(x)
(sin(x) -2)(3sin(x) +1) = 0 . . . . . . factor the quadratic
Values of sin(x) that make this true are ...
sin(x) = 2 . . . . . true only for complex values of x
sin(x) = -1/3
Then the possible values of x are ...
x = arcsin(-1/3), -π -arcsin(-1/3)
x ≈ {-2.80176, -0.339837} . . . . . rounded to 6 sf