The answer should be 12.2
7^2+10^2=c^2
49+100=c^2
149=c^2
12.2=c
![\bf \cfrac{\sqrt[4]{63}}{4\sqrt[4]{6}}\qquad \begin{cases} 63=3\cdot 3\cdot 7\\ 6=2\cdot 3 \end{cases}\implies \cfrac{\sqrt[4]{3\cdot 3\cdot 7}}{4\sqrt[4]{2\cdot 3}}\implies \cfrac{\underline{\sqrt[4]{3}}\cdot \sqrt[4]{3}\cdot \sqrt[4]{7}}{4\sqrt[4]{2}\cdot \underline{\sqrt[4]{3}}} \\\\\\ \cfrac{\sqrt[4]{3}\cdot \sqrt[4]{7}}{4\sqrt[4]{2}}\implies \cfrac{\sqrt[4]{3\cdot 7}}{4\sqrt[4]{2}}\implies \cfrac{\sqrt[4]{21}}{4\sqrt[4]{2}}](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B63%7D%7D%7B4%5Csqrt%5B4%5D%7B6%7D%7D%5Cqquad%20%0A%5Cbegin%7Bcases%7D%0A63%3D3%5Ccdot%203%5Ccdot%207%5C%5C%0A6%3D2%5Ccdot%203%0A%5Cend%7Bcases%7D%5Cimplies%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B3%5Ccdot%203%5Ccdot%207%7D%7D%7B4%5Csqrt%5B4%5D%7B2%5Ccdot%203%7D%7D%5Cimplies%20%5Ccfrac%7B%5Cunderline%7B%5Csqrt%5B4%5D%7B3%7D%7D%5Ccdot%20%5Csqrt%5B4%5D%7B3%7D%5Ccdot%20%5Csqrt%5B4%5D%7B7%7D%7D%7B4%5Csqrt%5B4%5D%7B2%7D%5Ccdot%20%5Cunderline%7B%5Csqrt%5B4%5D%7B3%7D%7D%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7B%5Csqrt%5B4%5D%7B3%7D%5Ccdot%20%5Csqrt%5B4%5D%7B7%7D%7D%7B4%5Csqrt%5B4%5D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B3%5Ccdot%207%7D%7D%7B4%5Csqrt%5B4%5D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B21%7D%7D%7B4%5Csqrt%5B4%5D%7B2%7D%7D)
![\bf \textit{now, rationalizing the denominator}\\\\ \cfrac{\sqrt[4]{21}}{4\sqrt[4]{2}}\cdot \cfrac{\sqrt[4]{2^3}}{\sqrt[4]{2^3}}\implies \cfrac{\sqrt[4]{21}\cdot \sqrt[4]{8}}{4\sqrt[4]{2}\cdot \sqrt[4]{2^3}}\implies \cfrac{\sqrt[4]{21\cdot 8}}{4\sqrt[4]{2\cdot 2^3}}\implies \cfrac{\sqrt[4]{168}}{4\sqrt[4]{2^4}} \\\\\\ \cfrac{\sqrt[4]{168}}{4\cdot 2}\implies \cfrac{\sqrt[4]{168}}{8}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bnow%2C%20rationalizing%20the%20denominator%7D%5C%5C%5C%5C%0A%5Ccfrac%7B%5Csqrt%5B4%5D%7B21%7D%7D%7B4%5Csqrt%5B4%5D%7B2%7D%7D%5Ccdot%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B2%5E3%7D%7D%7B%5Csqrt%5B4%5D%7B2%5E3%7D%7D%5Cimplies%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B21%7D%5Ccdot%20%5Csqrt%5B4%5D%7B8%7D%7D%7B4%5Csqrt%5B4%5D%7B2%7D%5Ccdot%20%5Csqrt%5B4%5D%7B2%5E3%7D%7D%5Cimplies%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B21%5Ccdot%208%7D%7D%7B4%5Csqrt%5B4%5D%7B2%5Ccdot%202%5E3%7D%7D%5Cimplies%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B168%7D%7D%7B4%5Csqrt%5B4%5D%7B2%5E4%7D%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7B%5Csqrt%5B4%5D%7B168%7D%7D%7B4%5Ccdot%202%7D%5Cimplies%20%5Ccfrac%7B%5Csqrt%5B4%5D%7B168%7D%7D%7B8%7D)
and is all you can simplify from it.
so... all we did, was rationaliize it, namely, "getting rid of the pesky radical at the bottom", we do so by simply multiplying it by something that will raise the radicand, to the same degree as the root, thus the radicand comes out.
Answer:
x= -12
Step-by-step explanation:
Simplifying
4x + 10 = 2x + -14
Reorder the terms:
10 + 4x = 2x + -14
Reorder the terms:
10 + 4x = -14 + 2x
Solving
10 + 4x = -14 + 2x
Solving for variable 'x'.
Move all terms containing x to the left, all other terms to the right.
Add '-2x' to each side of the equation.
10 + 4x + -2x = -14 + 2x + -2x
Combine like terms: 4x + -2x = 2x
10 + 2x = -14 + 2x + -2x
Combine like terms: 2x + -2x = 0
10 + 2x = -14 + 0
10 + 2x = -14
Add '-10' to each side of the equation.
10 + -10 + 2x = -14 + -10
Combine like terms: 10 + -10 = 0
0 + 2x = -14 + -10
2x = -14 + -10
Combine like terms: -14 + -10 = -24
2x = -24
Divide each side by '2'.
x = -12
Simplifying
x = -12