Answer:
Step-by-step explanation:
First choose two points on the line,
Let the points are A and B.
From point A to B we are moving downwards by (5 - 1 = 4 units)
Therefore, Rise = -4
Horizontal distance between A and B = 2 units
Therefore, Run = 2
Since, slope of a line =
Slope =
= -2
Answer:
D. 85.7%
Step-by-step explanation:
its figuring out the percentage decrease
so you would go
35-5= 30
30/35 x 100 = 85.7
Answer:
The lifeguard should run across the shore a distance of 48.074 m before jumpng into the water in order to minimize the time to reach the child.
Step-by-step explanation:
This is a problem of optimization.
We have to minimize the time it takes for the lifeguard to reach the child.
The time can be calculated by dividing the distance by the speed for each section.
The distance in the shore and in the water depends on when the lifeguard gets in the water. We use the variable x to model this, as seen in the picture attached.
Then, the distance in the shore is d_b=x and the distance swimming can be calculated using the Pithagorean theorem:
Then, the time (speed divided by distance) is:
To optimize this function we have to derive and equal to zero:
As , the lifeguard should run across the shore a distance of 48.074 m before jumpng into the water in order to minimize the time to reach the child.
Answer:
x1=3. x2=-2
Step-by-step explanation:
b=-1
a=1
c=-6
x1=3
x2=-2
Answer:
3
Step-by-step explanation:
the answer is 3 if you check very well