For this case we have the following expression:
(1 / x + 2) + (1 / x + 3) + (1 / X ^ 2 + 5 + 6)
Rewriting we have:
(1 / x + 2) + (1 / x + 3) + (1 / ((x + 2) * (x + 3)))
By doing common factor we have:
(1 / ((x + 2) * (x + 3))) * (x + 3 + x + 2 + 1)
Rewriting:
(1 / ((x + 2) * (x + 3))) * (2x + 6)
The sum is:
((2x + 6) / ((x + 2) * (x + 3)))
Answer:
((2x + 6) / ((x + 2) * (x + 3)))
Answer:
37.5 percent
!!
Step-by-step explanation:
He traveled 48 feet more or you could say he traveled 16 yards more
Answer:
0.8753
Step-by-step explanation:
Calculate the probability that your job will be ready before 10.01 am
Here, the parameter of an Exponential is E(X)=12
Now, to calculate the third job probability, it follows Poisson Distribution with parameter 1/λ
Therefore, E(Y) =1/12
Here, The third job will be ready for 10:01 AM, then E(Y)=61/12
Therefore, the required probability is

=1- POISSON(3,5,true)
=1-0.1246
=0.8753
Answer:( 3, 4)
Step-by-step explanation: :)