Answer:

Step-by-step explanation:
Given:
To find:
- Summation notation of the given series
Summation Notation:

Where n is the number of terms and
is general term.
First, determine what kind of series it is, there are two main series that everyone should know:
A series that has common difference.
A series that has common ratio.
If you notice and keep subtracting the next term with previous term:
Two common difference, we can in fact say that the series is arithmetic one. Since we know the type of series, we have to find the number of terms.
Now that brings us to arithmetic sequence, we know that first term is 5 and last term is 251, we’ll be finding both general term and number of term using arithmetic sequence:
<u>Arithmetic Sequence</u>

Where
is the nth term,
is the first term and
is the common difference:
So for our general term:

And for number of terms, substitute
= 251 and solve for n:

Now we can convert the series to summation notation as given the formula above, substitute as we get:

Answer:
Decimal 0.333 to a fraction in simplest form is: 
Step-by-step explanation:
Given the decimal

Multiply and divide by 10 for every number after the decimal point.
There are three digits to the right of the decimal point, therefore multiply and divide by 1000.
Thus,

∵ 0.333×1000 = 333
Let us check if we can reduce the fraction 
For this, we need to find a common factor of 333 and 1000 in order to cancel it out.
But, first, we need to find the Greatest Common Divisor (GCD) of 333, 1000
<u>Greatest Common Divisor (GCD) : </u>
The GCD of a, b is the largest positive number that divides both a and b without a remainder.
Prime Factorization of 333: 3 · 3 · 37
Prime Factorization of 1000: 2 · 2 · 2 · 5 · 5 · 5
As there is no common factor for 333 and 1000, therefore, the GCD is 1.
Important Tip:
- As GCD is 1, therefore the fraction can not be simplified.
Therefore, decimal 0.333 to a fraction in simplest form is: 
Answer:
-4
Step-by-step explanation:
-6+2=-4
So the problem is

and you need to find x.
You can find x by taking fourth root of 256. The easiest way is to use your calculator. On my scientific calculator, it is 2nd then the button ^ that is
![\sqrt[x]{}](https://tex.z-dn.net/?f=%20%5Csqrt%5Bx%5D%7B%7D%20)
You get the answer of 4.