a. The equivalent expression for cos(4x) in terms of just x is 8cos⁴x - 8cos²x + 1
b. The equivalent expression for sin(4x) in terms of just x is 4sinxcos³x - 2sinxcosx
<h3>a. The equivalent trigonometric expression for cos(4x)</h3>
To find the trigonometric expression for cos(4x)
cos(4x) = cos[2(2x)]
Now from trigonometric identities
cos2Ф = 2cos²Ф - 1
Let 2x = Ф.
So, cos(4x) = 2cos²2x - 1
Also, cos2x = 2cos²x - 1
So, substituting cos2x into cos4x, we have
cos(4x) = 2cos²2x - 1
cos(4x) = 2[2cos²x - 1]² - 1
cos(4x) = 2[4cos⁴x - 4cos²x + 1] - 1
cos(4x) = 8cos⁴x - 8cos²x + 2 - 1
cos(4x) = 8cos⁴x - 8cos²x + 1
So, the equivalent expression for cos(4x) in terms of just x is 8cos⁴x - 8cos²x + 1
<h3>b. The equivalent trigonometric expression for sin(4x)</h3>
To find the expression for sin(4x)
sin(4x) = sin2(2x)
From trigonometric identities sin2Ф = 2sinФcosФ
Let 2x = Ф
So, sin(4x) = sin2(2x)
= 2sin2xcos2x
Since
- sin2x = 2sinxcosx and
- cos2x = 2cos²x - 1
Substituting these into the equation, we have
sin(4x) = 2sin2xcos2x
sin(4x) = (2sinxcosx)(2cos²x - 1)
sin(4x) = 4sinxcos³x - 2sinxcosx
So, the equivalent expression for sin(4x) in terms of just x is 4sinxcos³x - 2sinxcosx
Learn more about trigonometric expression here:
brainly.com/question/27904371
#SPJ1