Answer:
the confidence interval for the true weight of the specimen is;
4.1593 ≤ μ ≤ 4.1611
Step-by-step explanation:
We are given;
Standard deviation; σ = 0.001
Sample size; n = 8
Average weight; x¯ = 4.1602
We are given a 99% confidence interval and the z-value at this interval is 2.576
Formula for confidence interval is;
CI = x¯ ± (zσ/√n)
Plugging in the relevant values, we have;
CI = 4.1602 ± (2.576 × 0.001/√8)
CI = 4.1602 ± 0.000911
CI = (4.1602 - 0.000911), (4.1602 + 0.000911)
CI ≈ (4.1593, 4.1611)
Thus, the confidence interval for the true weight will be expressed as;
4.1593 ≤ μ ≤ 4.1611
Where μ represents the true weight
Answer:
The answer is 2.
Hope this helps and if you could mark this as brainliest. Thanks!
Answer:

Step-by-step explanation:
The Fundamental Theorem of Calculus states that:
![\displaystyle \frac{d}{dx}\left[ \int_a^x f(t)\, dt \right] = f(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Cleft%5B%20%5Cint_a%5Ex%20f%28t%29%5C%2C%20dt%20%20%5Cright%5D%20%3D%20f%28x%29)
Where <em>a</em> is some constant.
We can let:

By substitution:

Taking the derivative of both sides results in:
![\displaystyle g'(s) = \frac{d}{ds}\left[ \int_6^s g(t)\, dt\right]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20g%27%28s%29%20%3D%20%5Cfrac%7Bd%7D%7Bds%7D%5Cleft%5B%20%5Cint_6%5Es%20g%28t%29%5C%2C%20dt%5Cright%5D)
Hence, by the Fundamental Theorem:

The answer is x= 1/5 or 0.2
8/9 / 4/9
=(8/9)*(9/4) Multiply by second reciprocal
=(2/1)*(1/1) Cross reduce
=2 Multiply