1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Over [174]
1 year ago
12

Let and be differentiable vector fields and let a and b be arbitrary real constants. Verify the following identities.

Mathematics
1 answer:
elena-14-01-66 [18.8K]1 year ago
8 0

The given identities are verified by using operations of the del operator such as divergence and curl of the given vectors.

<h3>What are the divergence and curl of a vector field?</h3>

The del operator is used for finding the divergence and the curl of a vector field.

The del operator is given by

\nabla=\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}

Consider a vector field F=x\^i+y\^j+z\^k

Then the divergence of the vector F is,

div F = \nabla.F = (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).(x\^i+y\^j+z\^k)

and the curl of the vector F is,

curl F = \nabla\times F = \^i(\frac{\partial Fz}{\partial y}- \frac{\partial Fy}{\partial z})+\^j(\frac{\partial Fx}{\partial z}-\frac{\partial Fz}{\partial x})+\^k(\frac{\partial Fy}{\partial x}-\frac{\partial Fx}{\partial y})

<h3>Calculation:</h3>

The given vector fields are:

F1 = M\^i + N\^j + P\^k and F2 = Q\^i + R\^j + S\^k

1) Verifying the identity: \nabla.(aF1+bF2)=a\nabla.F1+b\nabla.F2

Consider L.H.S

⇒ \nabla.(aF1+bF2)

⇒ \nabla.(a(M\^i + N\^j + P\^k) + b(Q\^i + R\^j + S\^k))

⇒ \nabla.((aM+bQ)\^i+(aN+bR)\^j+(aP+bS)\^k)

⇒ (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).((aM+bQ)\^i+(aN+bR)\^j+(aP+bS)\^k)

Applying the dot product between these two vectors,

⇒ \frac{\partial (aM+bQ)}{\partial x}+ \frac{\partial (aN+bR)}{\partial y}+\frac{\partial (aP+bS)}{\partial z} ...(1)

Consider R.H.S

⇒ a\nabla.F1+b\nabla.F2

So,

\nabla.F1=(\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).(M\^i + N\^j + P\^k)

⇒ \nabla.F1=\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}+\frac{\partial P}{\partial z}

\nabla.F2=(\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).(Q\^i + R\^j + S\^k)

⇒ \nabla.F1=\frac{\partial Q}{\partial x}+\frac{\partial R}{\partial y}+\frac{\partial S}{\partial z}

Then,

a\nabla.F1+b\nabla.F2=a(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}+\frac{\partial P}{\partial z})+b(\frac{\partial Q}{\partial x}+\frac{\partial R}{\partial y}+\frac{\partial S}{\partial z})

⇒ \frac{\partial (aM+bQ)}{\partial x}+ \frac{\partial (aN+bR)}{\partial y}+\frac{\partial (aP+bS)}{\partial z} ...(2)

From (1) and (2),

\nabla.(aF1+bF2)=a\nabla.F1+b\nabla.F2

2) Verifying the identity: \nabla\times(aF1+bF2)=a\nabla\times F1+b\nabla\times F2

Consider L.H.S

⇒ \nabla\times(aF1+bF2)

⇒ (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z})\times(a(M\^i+N\^j+P\^k)+b(Q\^i+R\^j+S\^k))

⇒ (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z})\times ((aM+bQ)\^i+(aN+bR)\^j+(aP+bS)\^k)

Applying the cross product,

\^i(\^k\frac{\partial (aP+bS)}{\partial y}- \^j\frac{\partial (aN+bR)}{\partial z})+\^j(\^i\frac{\partial (aM+bQ)}{\partial z}-\^k\frac{\partial (aP+bS)}{\partial x})+\^k(\^j\frac{\partial (aN+bR)}{\partial x}-\^i\frac{\partial (aM+bQ)}{\partial y}) ...(3)

Consider R.H.S,

⇒ a\nabla\times F1+b\nabla\times F2

So,

a\nabla\times F1=a(\nabla\times (M\^i+N\^j+P\^k))

⇒ \^i(\frac{\partial aP\^k}{\partial y}- \frac{\partial aN\^j}{\partial z})+\^j(\frac{\partial aM\^i}{\partial z}-\frac{\partial aP\^k}{\partial x})+\^k(\frac{\partial aN\^j}{\partial x}-\frac{\partial aM\^i}{\partial y})

a\nabla\times F2=b(\nabla\times (Q\^i+R\^j+S\^k))

⇒ \^i(\frac{\partial bS\^k}{\partial y}- \frac{\partial bR\^j}{\partial z})+\^j(\frac{\partial bQ\^i}{\partial z}-\frac{\partial bS\^k}{\partial x})+\^k(\frac{\partial bR\^j}{\partial x}-\frac{\partial bQ\^i}{\partial y})

Then,

a\nabla\times F1+b\nabla\times F2 =

\^i(\^k\frac{\partial (aP+bS)}{\partial y}- \^j\frac{\partial (aN+bR)}{\partial z})+\^j(\^i\frac{\partial (aM+bQ)}{\partial z}-\^k\frac{\partial (aP+bS)}{\partial x})+\^k(\^j\frac{\partial (aN+bR)}{\partial x}-\^i\frac{\partial (aM+bQ)}{\partial y})

...(4)

Thus, from (3) and (4),

\nabla\times(aF1+bF2)=a\nabla\times F1+b\nabla\times F2

Learn more about divergence and curl of a vector field here:

brainly.com/question/4608972

#SPJ4

Disclaimer: The given question on the portal is incomplete.

Question: Let F1 = M\^i + N\^j + P\^k and F2 = Q\^i + R\^j + S\^k be differential vector fields and let a and b arbitrary real constants. Verify the following identities.

1)\nabla.(aF1+bF2)=a\nabla.F1+b\nabla.F2\\2)\nabla\times(aF1+bF2)=a\nabla\times F1+b\nabla\times F2

You might be interested in
Please help me !!!!!!!
erastova [34]

Answer:

C. Both (1,11) and (-1,-5)

Step-by-step explanation:

Ok so,

let's try to plug in the first ordered pair into the equation. It should look like this:

11 = 8+3

11=11      CORRECT

now let's try to plug in the second ordered pair. it should look like this:

-5 = -8+3

-5 = -5      CORRECT

hope this helps. have a good day!!

6 0
2 years ago
Kevin and Sam each have a map with the following instructions:
Zielflug [23.3K]

Answer:

28

Step-by-step explanation:

7 0
2 years ago
Please Help me ASAP i need to turn it in, in like 10 min. Please answer the questions in the screenshot ill give u 20 points Tha
Delvig [45]

Answer:

for #1 its the 1st and 4th box

for # 2 it's 13.5 and 20.25

Step-by-step explanation:

1st box - 10 ÷ 5 = 2 and 25 ÷ 5 = 5

4th box - 10 x 2 = 20 and 25 x 2 = 50

you have to make sure that you do the same thing for both sides of the equation

6 x 2.25 = 13.5

9 x 2.25 = 20.25

Dilation is an enlarging or shrinking of a math figure using a specific scale factor

multiply your numbers by that given scale factor to give you your answer of option 2

hope this is right I'm not completely positive about the send one.

4 0
3 years ago
Can anyone tell me where i can get the answers for edge2020 pls i am really behind
Art [367]

I use edge also most of the answers come for this app all u have to do is copy and paste your answer hopefully this helps

8 0
3 years ago
Perimeter of triangle:20
EleoNora [17]
What do you want me to do
4 0
3 years ago
Other questions:
  • What are the prime numbers
    10·2 answers
  • Simplify this expression
    7·1 answer
  • Jimmy is writing a paper for one of his classes. The paper has to be 3,000 words long, and so far he has written 828 words. If h
    6·1 answer
  • Jose wants to pay off his credit card balances within 18 months. He is trying to decide if he should use his $1,750 in
    9·2 answers
  • What is the relationship between the shade at Ingles in the diagram?(&lt;1 and &lt;2)
    15·1 answer
  • A partially completed equation for a line is shown below. If the line passes through the point (-4, 6). Write the equation for t
    7·2 answers
  • Please help ASAP no links please. send link = reported
    8·1 answer
  • 52<br> 5 halves<br><br> −52<br> negative 5 halves<br><br> −25
    12·2 answers
  • John invests $6750 in an account that pays 6.25% interest per year. After how many years will her
    6·1 answer
  • Find the equation of a line that passes through (3,12) and is parallel to the graph of y=2x+4. Write the equation in​ slope-inte
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!