Answer:
Base = 3√5
Step-by-step explanation:
Given:
Hypotenuse = 9
Perpendicular = 6
Find:
Base(x)
Computation:
Using Pythagorean theorem
Base = √Hypotenuse² - Perpendicular²
Base = √9² - 6²
Base = √81 - 36
Base = √45
Base = 3√5
Answer:
The values of p in the equation are 0 and 6
Step-by-step explanation:
First, you have to make the denominators the same. to do that, first factor 2p^2-7p-4 = \left(2p+1\right)\left(p-4\right)2p
2
−7p−4=(2p+1)(p−4)
So then the equation looks like:
\frac{p}{2p+1}-\frac{2p^2+5}{(2p+1)(p-4)}=-\frac{5}{p-4}
2p+1
p
−
(2p+1)(p−4)
2p
2
+5
=−
p−4
5
To make the denominators equal, multiply 2p+1 with p-4 and p-4 with 2p+1:
\frac{p^2-4p}{(2p+1)(p-4)}-\frac{2p^2+5}{(2p+1)(p-4)}=-\frac{10p+5}{(p-4)(2p+1)}
(2p+1)(p−4)
p
2
−4p
−
(2p+1)(p−4)
2p
2
+5
=−
(p−4)(2p+1)
10p+5
Since, this has an equal sign we 'get rid of' or 'forget' the denominator and only solve the numerator.
(p^2-4p)-(2p^2+5)=-(10p+5)(p
2
−4p)−(2p
2
+5)=−(10p+5)
Now, solve like a normal equation. Solve (p^2-4p)-(2p^2+5)(p
2
−4p)−(2p
2
+5) first:
(p^2-4p)-(2p^2+5)=-p^2-4p-5(p
2
−4p)−(2p
2
+5)=−p
2
−4p−5
-p^2-4p-5=-10p+5−p
2
−4p−5=−10p+5
Combine like terms:
-p^2-4p+0=-10p−p
2
−4p+0=−10p
-p^2+6p=0−p
2
+6p=0
Factor:
p=0, p=6p
Answer:
The factors of given polynomial x =-1 , -2 and x =3
Step-by-step explanation:
<u><em>Step(i):</em></u>-
Given the polynomial
f(x) = x³ - 7x -6
put x =-1
f(-1) = (-1 )³- 7(-1) - 6 = -1+7-6=0
(x+1) is a one factor
By using synthetic division
x³ x² x constant
x=-1 ↓ 1 0 -7 -6
<u>↓ 0 -1 1 6</u>
<u> 1 -1 -6 0 </u>
<u />
<em>The polynomial x² - x - 6 </em>
<u><em>Step(ii):-</em></u>
The factors ( x+1)(x² - x - 6 ) = 0
x = -1 and x² - x - 6 =0
x =-1 and x² - 3x + 2 x - 6 =0
x =-1 and x (x -3) + 2( x-3) =0
x =-1 and (x+2)(x-3) =0
<u><em>Final answer:-</em></u>
The factors of given polynomial x =-1 , -2 and x =3