Write the decimal equivalent for each rational number. Use a bar over any repeating digits.8 4/9
1 answer:
The decimal equivalent for the rational number 8 4/9 using a bar over any repeating digits is
_
= 8.4
<h3>Rational number</h3>
A rational number is a number that can be written as a fraction, whole number, decimal that stops or a repeating decimal.
8 4/9
= 76/9
= 8.444444444444444
_
= 8.4
Therefore, the decimal equivalent for the rational number 8 4/9 using a bar over any repeating digits is
_
= 8.4
Learn more about rational number:
brainly.com/question/12088221
#SPJ1
You might be interested in
Answer:
9
Step-by-step explanation:
10+ -7
3
3 = 9/3
9
Answer:
g 78 degress
Step-by-step explanation:
Answer:
1/4, 0.25
13/40, 0.325
1/25, 0.04
3/4, 0.75
13/200, 0.065
1 1/4, 1.25
1/8, 0.125
1/500, 0.002
3/400, 0.0075
107/100, 1.07
21/10, 2.10
9/40, 0.225
notice that, if Q is the midpoint of PR, that simply means that PQ = QR = 43.
![\bf \boxed{P}\underset{\leftarrow 9x-31 \to }{\stackrel{\stackrel{\downarrow }{43}}{\rule[0.35em]{10em}{0.25pt}}Q\stackrel{43}{\rule[0.35em]{10em}{0.25pt}}}\boxed{R} \\\\\\ 9x-31=43+43\implies 9x-31=86\implies 9x=117 \\\\\\ x=\cfrac{117}{9}\implies x=13](https://tex.z-dn.net/?f=%5Cbf%20%5Cboxed%7BP%7D%5Cunderset%7B%5Cleftarrow%209x-31%20%5Cto%20%7D%7B%5Cstackrel%7B%5Cstackrel%7B%5Cdownarrow%20%7D%7B43%7D%7D%7B%5Crule%5B0.35em%5D%7B10em%7D%7B0.25pt%7D%7DQ%5Cstackrel%7B43%7D%7B%5Crule%5B0.35em%5D%7B10em%7D%7B0.25pt%7D%7D%7D%5Cboxed%7BR%7D%0A%5C%5C%5C%5C%5C%5C%0A9x-31%3D43%2B43%5Cimplies%209x-31%3D86%5Cimplies%209x%3D117%0A%5C%5C%5C%5C%5C%5C%0Ax%3D%5Ccfrac%7B117%7D%7B9%7D%5Cimplies%20x%3D13)
Answer:
162-x=180
x=342
Step-by-step explanation: