Answer:
a
Step-by-step explanation:
g(1)=5
f(g(1))=f(5)
f(5)=2
Answer:
The vertex for the function f(x) = 3(x – 2)2 + 4 is at (2, 4).
Step-by-step explanation:
Find the vertex for f(x) = 3 (x - 2)^2 + 4
f(x) = 3 (x - 2)^2 + 4 can also be written as:
y = 3 (x - 2)^2 + 4
To find critical points, first compute f'(x):
d/(dx)(3 (x - 2)^2 + 4) = 6 (x - 2):
f'(x) = 6 (x - 2)
Solve 6 (x - 2) = 0
6x - 12 = 0
6x = 12
x = 2
iI you substitute x = 2 in 3 (x - 2)^2 + 4 then you get:
y = 3 (x - 2)^2 + 4
x = 2
y = 3 (2 - 2)^2 + 4
y = 3 (0)^2 + 4
y = 3 (0) + 4
y = 4
Answer: The vertex for the function f(x) = 3(x – 2)2 + 4 is at ( 2, 4 ).
Answer:
It has 20 regular triangular faces, 30 square faces, 12 regular pentagonal faces, 60 vertices, and 120 edges.
Step-by-step explanation:
hope this helped
Answer:
7
Step-by-step explanation:
а>12-6
5,000 Contains 0's up until the Hundreds value while (8*5000) 40,000 Contains 0's up until the Thousands value.