To find the degree of this function, you would look at the first term of the function, which is 3. So, the degree of this function would be 3.
Answer:
10th term is 10
Step-by-step explanation:
The nth term for finding the geometric progression is expressed as;
Tn = ar^n-1
a is the first term
r is the common ratio
n is the number of terms
a11 = ar^11-1
a11 = ar^10
Since a11 = -5 and r = -1/2
-5 = a(-1/2)^10
-5 = a(1/1024)
a= 1024 * -5
a = -5120
Nest is to get the 10th terms
a10 = ar^9
a10 = -5120 * (-1/2)^9
a10 = -5120 * -1/512
a10 = 10
Hence the 10th term of the sequence is 10
4y = 42 - 3y
First, add '3y' to both of the sides.
Second, add '4y + 3y' to get '7y'.
Third, divide both sides by '7'.
Fourth, how many times does 7 go into 42? 42 ÷ 7 = '6'.

Answer:
y = 6
Answer:
the 2nd
Step-by-step explanation:
![\sqrt[5]{4} \times \sqrt{2 } \\ {4}^{ \frac{1}{5} } \times {2}^{ \frac{1}{2} } \\ {2}^{2 \times \frac{1}{5} } \times {2}^{ \frac{1}{2} } \\ {2}^{ \frac{2}{5} + \frac{1}{2} } \\ {2}^{ \frac{9}{10} } = \sqrt[10]{ {2}^{9} }](https://tex.z-dn.net/?f=%20%5Csqrt%5B5%5D%7B4%7D%20%20%20%5Ctimes%20%20%5Csqrt%7B2%20%7D%20%20%5C%5C%20%20%7B4%7D%5E%7B%20%5Cfrac%7B1%7D%7B5%7D%20%7D%20%20%20%5Ctimes%20%20%20%7B2%7D%5E%7B%20%5Cfrac%7B1%7D%7B2%7D%20%7D%20%20%5C%5C%20%20%7B2%7D%5E%7B2%20%5Ctimes%20%5Cfrac%7B1%7D%7B5%7D%20%20%7D%20%20%5Ctimes%20%20%7B2%7D%5E%7B%20%5Cfrac%7B1%7D%7B2%7D%20%7D%20%20%5C%5C%20%20%7B2%7D%5E%7B%20%5Cfrac%7B2%7D%7B5%7D%20%20%2B%20%20%5Cfrac%7B1%7D%7B2%7D%20%7D%20%20%5C%5C%20%20%20%7B2%7D%5E%7B%20%5Cfrac%7B9%7D%7B10%7D%20%7D%20%20%3D%20%20%5Csqrt%5B10%5D%7B%20%7B2%7D%5E%7B9%7D%20%7D%20)