Answer: From the figure attached,
Point X is the midpoint of line AC.
Since coordinates of the midpoint of the segment joining endpoints and is given by,
Therefore, coordinates of the point X will be, = (a, a)
From triangle AXB,
Length of AB = 2a
Length of AX =
Length of BX =
=
Length of AX = BX =
Therefore, triangle AXB is an isosceles triangle.
Step-by-step explanation:
The range would be 0, -3, -9, 5, and 7. The range includes all y values or output values.
Answer:
7
Step-by-step explanation:
<h2><u>Oblique Cylinder</u></h2>
<h3>how do you find the volume of this slanted cylinder?</h3>
<u>Given:</u>
- Height - 8 yd
- Radius - 3 yd
To find the volume of an oblique cylinder, use the formula V = πr²h where,
- V - Volume
- π - Pi (3.14 is the value)
- R - Radius
- H - Height
We can substitute the given values to the formula.
- V = πr²h
- V = (3.14)(3²)(8)
- V = (3.14)(9)(8)
- V = (3.14)(72)
- V = 226.08
<u>Answer:</u>
- The volume of the oblique cylinder is <u>226.08 cm³</u>.
Wxndy~~
<h3><u>Solution</u></h3>
<u>Given </u><u>:</u><u>-</u>
- Perimeter of rectangle = 72 cm
- The length is 3 more than twice the width.
<u>F</u><u>i</u><u>n</u><u>d</u><u> </u><u>:</u><u>-</u>
<h3 /><h3>
<u>Explantion</u></h3>
<u>Using </u><u>Formula</u>

<u>Let,</u>
- Length of Rectangle = x cm
- Breadth of Rectangle = y cm
<u>According</u><u> to</u><u> question</u><u>,</u>
==> perimeter of Rectangle = 72
==> 2(x+y) = 72
==> x + y = 72/2
==> x + y = 36_________________(1)
<u>Again,</u>
==> x = 2y + 3
==> x - 2y = 3__________________(2)
<u>Subtract</u><u> </u><u>equ(</u><u>1</u><u>)</u><u> </u><u>&</u><u> </u><u>equ(</u><u>2</u><u>)</u>
==> y + 2y = 36 - 3
==> 3y = 33
==> y = 33/3
==> y = 11
<u>keep </u><u>in </u><u>equ(</u><u>1</u><u>)</u>
==> x - 2×11 = 3
==> x = 3 + 22
==> x = 25
<h3><u>Hence</u></h3>
- <u>Length</u><u> of</u><u> </u><u>Rectangle</u><u> </u><u>=</u><u> </u><u>2</u><u>5</u><u> </u><u>cm</u>
- <u>Width </u><u>of </u><u>Rectangle</u><u> </u><u>=</u><u> </u><u>1</u><u>1</u><u> </u><u>cm</u>
<h3>
<u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u><u>_</u></h3>
<h3 />