The question is incomplete. Here is the complete question.
m∠J and m∠Kare base angles of an isosceles trapezoid JKLM.
If m∠J = 18x + 8, and m∠M = 11x + 15 , find m∠K.
A. 1
B. 154
C. 77
D. 26
Answer: B. m∠K = 154
Step-by-step explanation: <u>Isosceles</u> <u>trapezoid</u> is a parallelogram with two parallel sides, called Base, and two non-parallel sides that have the same measure.
Related to internal angles, angles of the base are equal and opposite angles are supplementary.
In trapezoid JKLM, m∠J and m∠M are base angles, so they are equal:
18x + 8 = 11x + 15
7x = 7
x = 1
Now, m∠K is opposite so, they are supplementary, which means their sum results in 180°:
m∠J = 18(1) + 8
m∠J = 26
m∠K + m∠J = 180
m∠K + 26 = 180
m∠K = 154
The angle m∠K is 154°
You add +7 to both sides and then divide by 9 to get the x alone.
Answer:
10) The first 2 on the left are functions and the one on the top right is a function, but the bottom right is not.
11) Domain = (2, 8, -1, 0) Range = (5, -2, 4, 5)
Plug in (7, 12) for x and y in the equation.
12 = 2(7) + 1
12 = 14 + 1
12 ≠ 15
Therefore, (7, 12) is not on the straight line equation.
Answer:
1st problem:
Converges to 6
2nd problem:
Converges to 504
Step-by-step explanation:
You are comparing to 
You want the ratio r to be between -1 and 1.
Both of these problem are so that means they both have a sum and the series converges to that sum.
The formula for computing a geometric series in our form is
where
is the first term.
The first term of your first series is 3 so your answer will be given by:

The second series has r=1/6 and a_1=420 giving me:
.