1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AlladinOne [14]
1 year ago
6

I came up the answer as 57. I will attach my note, can you check?

Mathematics
1 answer:
ololo11 [35]1 year ago
4 0

BC=19

Explanation

Step 1

ABE

triangle ABE is rigth triangle, then let

\begin{gathered} Angle=60 \\ adjacentside=BE \\ opposit\text{ side(the one in front of the angle)= AB=}\frac{19\sqrt[]{6}}{4} \end{gathered}

so, we need a function that relates, angle, adjancent side and opposite side

\tan \theta=\frac{opposite\text{ side}}{\text{adjacent side}}

replace

\begin{gathered} \tan \theta=\frac{opposite\text{ side}}{\text{adjacent side}} \\ \tan 60=\frac{AB}{\text{BE}} \\ \text{cross multiply} \\ \text{BE}\cdot\tan \text{ 60=AB} \\ \text{divide both sides by tan 60} \\ \frac{\text{BE}\cdot\tan\text{ 60}}{\tan\text{ 60}}=\frac{\text{AB}}{\tan\text{ 60}} \\ BE=\frac{\text{AB}}{\tan\text{ 60}} \\ \text{if AB=}\frac{19\sqrt[]{6}}{4} \\ BE=\frac{\frac{19\sqrt[]{6}}{4}}{\sqrt[]{3}} \\ BE=\frac{19\sqrt[]{6}}{4\sqrt[]{3}} \end{gathered}

Step 2

BED

again, we have a rigth triangle,then let

\begin{gathered} \text{Hypotenuse}=BD \\ \text{adjacent side= BE=6.71} \\ \text{angle}=\text{ 45} \end{gathered}

so, we need a function that relates; angle, hypotenuse and adjacent side

\cos \theta=\frac{adjacent\text{ side}}{\text{hypotenuse}}

replace.

\begin{gathered} \cos \theta=\frac{adjacent\text{ side}}{\text{hypotenuse}} \\ \cos 45=\frac{6.71}{\text{BD}} \\ BD=\frac{6.71}{\cos \text{ 45}} \\ BD=\frac{\frac{19\sqrt[]{6}}{4\sqrt[]{3}}}{\frac{\sqrt[]{2}}{2}} \\ BD=\frac{38\sqrt[]{6}}{4\sqrt[]{6}} \\ BD=\frac{38}{4} \end{gathered}

Step 3

finally BDE

let

angle=30

opposite side= BD

use sin function

\begin{gathered} \sin \theta=\frac{opposite\text{ side}}{\text{hypotenuse}} \\ \text{replace} \\ \sin \text{ 30=}\frac{BD}{BC} \\ BC\cdot\sin 30=BD \\ BC=\frac{BD}{\sin \text{ 30}} \\ BC=\frac{\frac{38}{4}}{\frac{1}{2}} \\ BC=\frac{76}{4}=19 \\ BC=19 \end{gathered}

so, the answer is 19

I hop

You might be interested in
Find the mean (average) of each set of numbers. Round your answer to the nearest tenth 16 12 8 6 17 8 7 2
Art [367]

Answer: 9.5

Step-by-step explanation:

3 0
4 years ago
Mr.Smith had $2400 in his account.He withdrew 60% of the money to buy a new TV set.Calculate the percentage that is left in his
Ksivusya [100]

Answer:

He would would have about 40%Left on his account AKA $960 dollars.

Step-by-step explanation:

Sorry If I am Wrong.

6 0
3 years ago
Read 2 more answers
Given: △ABC, AB=5 sqrt 2 m∠A=45°, m∠C=30° Find: BC and AC will give brainliest!!! By the way the answer is not 5 and 3.66
Makovka662 [10]

Answer:

Therefore,

BC=a=10\ units\\\\AC=b=13.66\ units

Step-by-step explanation:

Consider a Δ ABC with

m∠ A = 45°

m∠ C = 30°

AB = c = 5√2

To Find:

BC = a = ?

AC = c = ?

Solution:

Triangle sum property:

In a Triangle sum of the measures of all the angles of a triangle is 180°.

\angle A+\angle B+\angle C=180\\\\45+30+\angle B=180\\\ttherefore m\angle B =180-75=105\°

We know in a Triangle Sine Rule Says that,

In Δ ABC,

\frac{a}{\sin A}= \frac{b}{\sin B}= \frac{c}{\sin C}

substituting the given values we get

\frac{a}{\sin 45}= \frac{b}{\sin 105}= \frac{5\sqrt{2} }{\sin 30}

∴ \frac{a}{\sin 45}= \frac{5\sqrt{2} }{\sin 30}\\\\a=\sin 45\times \frac{5\sqrt{2} }{\sin 30}\\\\a=\frac{1}{\sqrt{2} }\times \frac{5\sqrt{2} }{0.5} \\\\\\a=\frac{5}{0.5} =10\\\therefore BC = a = 10\ units

Similarly for 'b',

\frac{b}{\sin 105}= \frac{5\sqrt{2} }{\sin 30}\\\frac{b}{0.9659}= \frac{5\sqrt{2} }{0.5}\\\\b=0.9659\times \frac{5\sqrt{2} }{0.5}\\\\b=\frac{6.8301}{0.5} \\\\b=13.66\\\therefore AC = b =13.66\ units\\

Therefore,

BC=a=10\ units\\\\AC=b=13.66\ units

8 0
3 years ago
A tree casts shadow 26 ft long. A 3 ft tall flowers casts a shadow 4 ft long. How tall is the tree?
Rufina [12.5K]

Answer:

19. 5 feets

Step-by-step explanation:

Shadow of tree = 26 feets

Height of flower = 3 feets

Shadow of flower = 4 feets

Height of sun Innthe sky:

Shadow of flower / height of flower

= 4/3 = 1.333333

Height of tree:

Shadow of tree / height of sun

26 feets / 1.33333

= 19.5 feets

Hence, height of tree = 19.5 feets

5 0
3 years ago
Which of the following is not part of the converse of the triangle proportionality theorem?
professor190 [17]
Converse-if a line drawn frm one side of a triangle to the other side divides the 2 sides in equal ratio then the line is parallel to the third side.
3 0
4 years ago
Read 2 more answers
Other questions:
  • What is the median of 100, 75, 40, 90, 80, 100, 92, 88, 80, 84, 81? I got 82 but it wasn’t right.
    10·2 answers
  • REPOST PLEASE HELP ME IVE BEEN WORKING FOREVER I CANT FAIL!!!
    9·1 answer
  • What is the value of sin x
    10·1 answer
  • Mia buys 3 feet of string to make keychains. She needs 6 inches of string to make one keychain. How many keychains can Mia make
    7·2 answers
  • What is the simplest form for 30/42? thanks!?
    13·2 answers
  • A runner ran tow laps around a 400m track. she completed the first lap in 50 seconds and then decreased her speed by 5% for the
    15·1 answer
  • You plan on financing a home theater system for $1,752. The audio shop offers a 15% APR for a 25 month loan. Use this informatio
    12·2 answers
  • Which line has a slope of -1/3?<br> (1) y- {x+2 (3) 3y + x=9<br> (2) y = 3x + 1 (4) 3y = x + 6
    7·2 answers
  • Which of the following expressions will result in a product less than zero?
    10·2 answers
  • Find the area of the kite.​ 9 2 3
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!