The repeats which occur together on a chromosome are referred to as VNTR. The length of each repeat is 60bp.
The first primer is 20bp and is 53 bp away from 1st repeat. Therefore, the total length of sequence amplified by the first primer till 1st repeat = 20+53 = 73bp. Beyond this point 6 repeats on 60 bp are present, hence, the length becomes = 73 + (60X6) = 433bp.
Now the reverse primer which is 21bp in length is located 28bp from the repeat on its side. Reverse primer comes from the opposite direction, so it must be present after the 6 repeats.
The total length of the amplified region = 433 + 28 + 21 = 482 bp.
1. Explain why the distribution of fossils in Figure 1 supports the hypothesis that the extinction of these species was the result of a sudden environmental change.
This hypothesis can be supported because all the fossils accumulate almost at the same age of the rock layer. That is, all the fossils died almost at the same time.
2. Describe an environmental change that could have produced this type of fossil distribution.
Good examples of sudden environmental changes are volcanoes. When a rash occurs, the whole environment suddenly changes for different reasons such as ash or lava, and all living things can die immediately or in a few years by the change in the ecosystem.
3. Explain why the distribution of fossils in Figure 2 supports the hypothesis that the extinction of these species was the result of a gradual environmental change.
This is because the fossils accumulate at different ages of the rock layer, that means, the species dying over time. The gradual descent of the fossils is observed.
4. Describe an environmental change that could produce this type of fossil distribution.
For example, if a climate change occurs - the temperature increases or decreases - it can cause the trees or plants to die and all the animals in the ecosystem also die when they have no food. But this process is sequential, so the change can take years, centuries or even millions of years.
I hope this can help you.
Answer/Explanation:
<h3>Incomplete dominance</h3>
In incomplete dominance, one allele is not entirely dominant over the other, so heterozygotes (organisms with two different alleles for the gene) show an intermediate or blended phenotype.
For example, consider flower colour.
- If the allele for red flowers (R) was dominant over the allele for white flowers (r), then there are three possible genotypes (RR, Rr, and rr) and two possible phenotypes. (Red (RR and Rr) and white (rr)).
- However, if the allele for red flowers (R) was incompletely dominant over the allele for white flowers (r), then there are three possible genotypes (RR, Rr, rr), and three possible phenotypes (red (RR), white (rr), and pink (Rr))
<h3>Co-dominance</h3>
In incomplete dominance, two alleles are both expressed, one is not dominant over the other. Therefore, heterozygotes (organisms with two different alleles for the gene) express both traits.
For example, consider flower patterns.
- If the allele for spots (F) was dominant over the allele for stripes (f), then there are three possible genotypes (FF, Ff, and ff) and two possible phenotypes. (Spots (Ff and ff) and stripes (ff)).
- However, if the allele for spots (F) was co-dominant to the allele for stripes (f), then there are three possible genotypes (FF, Ff, ff), and three possible phenotypes (spots (FF), stripes (ff), and spots and stripes (Ff))
Answer:
precipitate
Explanation:
In case of an inorganic chemical reaction leading to precipitation, the chemical reagent causing the solid to form is called the precipitant. The clear liquid remaining above the precipitated or the centrifuged solid phase is the ' supernate' or ' supernatant'.