1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rjkz [21]
3 years ago
6

Please help asp find the answer for h(10) if h(x)=8x+10.

Mathematics
2 answers:
notsponge [240]3 years ago
6 0
Plug  h = 10 into 8x + 10

h(10) = 8(10) + 10  = 90 answer
coldgirl [10]3 years ago
4 0
H(10)=8(10)+10
h(x)=90
hope this helps
You might be interested in
Identify the expression with nonnegative limit values. More info on the pic. PLEASE HELP.
marshall27 [118]

Answer:

\lim _{x\to 2}\:\frac{x-2}{x^2-2}\\\\  \lim _{x\to 11}\:\frac{x^2+6x-187}{x^2+3x-154}\\\\ \lim _{x\to \frac{5}{2}}\left\frac{2x^2+x-15}{2x-5}\right

Step-by-step explanation:

a) \lim _{x\to 3}\:\frac{x^2-10x+21}{x^2+4x-21}=\lim \:_{x\to \:3}\:\frac{\left(x-7\right)\left(x-3\right)}{\left(x+7\right)\left(x-3\right)}=\lim \:_{x\to \:3}\:\frac{x-7}{x+7}=\frac{3-7}{3+7}=-\frac{4}{10}=-\frac{2}{5}

b) \lim _{x\to -\frac{3}{2}}\left(\frac{2x^2-5x-12}{2x+3}\right)=\lim \:_{x\to -\frac{3}{2}}\:\frac{\left(2x+3\right)\left(x-4\right)}{\left(2x+3\right)}=\lim \:\:_{x\to \:-\frac{3}{2}}\:\left(x-4\right)=-\frac{3}{2}-4\\ \\ \lim _{x\to -\frac{3}{2}}\left(\frac{2x^2-5x-12}{2x+3}\right)=-\frac{11}{2}

c) \lim _{x\to 2}\:\frac{x-2}{x^2-2}=\frac{2-2}{\left(2\right)^2-2}=\frac{0}{4-2}=0

d) \lim _{x\to 11}\:\frac{x^2+6x-187}{x^2+3x-154}=\lim _{x\to 11}\:\frac{\left(x-11\right)\left(x+17\right)}{\left(x-11\right)\left(x+14\right)}=\lim _{x\to 11}\:\frac{\left(x+17\right)}{\left(x+14\right)}=\frac{11+17}{11+14}=\frac{28}{25}

e) \lim _{x\to 3}\:\frac{x^2-8x+15}{x-3}=\lim \:_{x\to \:3}\:\frac{\left(x-3\right)\left(x-5\right)}{x-3}=\lim _{x\to 3}\left(x-5\right)=3-5=-2

f) \lim _{x\to \frac{5}{2}}\left(\frac{2x^2+x-15}{2x-5}\right)=\lim \:_{x\to \:\frac{5}{2}}\frac{\left(2x-5\right)\left(x+3\right)}{2x-5}=\lim \:\:_{x\to \:\:\frac{5}{2}}\left(x+3\right)=\frac{5}{2}+3=\frac{11}{2}

4 0
3 years ago
Fill in the table using this function rule.<br> y = 10x-3<br> X<br> -<br> 0
dexar [7]

Answer:

Step-by-step explanation:

<em>y</em> = 10(- 1) - 3 = <em>- 13</em>

<em>y</em> = 10(0) - 3 = <em>- 3 </em>

<em>y</em> = 10(1)  - 3 =<em> 7 </em>

<em>y</em> = 10(5) - 3 = <em>47</em>

5 0
3 years ago
Describe and correct the error in writing an equation of the line shown
Rudiy27

Answer:

y  = -\frac{3}{5}x+4

Step-by-step explanation:

Given:

(x_1,y_1) = (0,4)

(x_2,y_2) = (5,1)

The attachment completes the question

From the attachment, the slope of the line was calculated as:

m = \frac{1-4}{0-5}

This step is inaccurate because the slope of a line is calculated using

m = \frac{y_2-y_1}{x_2-x_1}

Which gives

m = \frac{1-4}{5-0}

m = \frac{-3}{5}

m = -\frac{3}{5}

The line equation is then calculated using:

y -y_1 = m(x - x_1)

Substitute values for m, x1 and y1

y - 4 = -\frac{3}{5}(x - 0)

y - 4 = -\frac{3}{5}(x)

Open bracket

y - 4 = -\frac{3}{5}x

Make y the subject

y  = -\frac{3}{5}x+4

6 0
2 years ago
Please help I will mark Brainly
Sedbober [7]
The answer for your question is 686
8 0
3 years ago
Read 2 more answers
What is the length of the hypotenuse
Viefleur [7K]

Answer:

15ft

Step-by-step explanation:

a^2 + b^2 = c^2

12 or 9 can equal to b or a

12^2 + 9^2 = c^2

144 + 81 = c ^2

225 = c^2

Square root of 225

15 = c

4 0
3 years ago
Read 2 more answers
Other questions:
  • Help me;( i dont understand
    5·1 answer
  • Graph the function by the table. Is the function linear or nonlinear?
    15·2 answers
  • 5 over 8 minus 5 over 24
    5·2 answers
  • Please help with number 12
    5·2 answers
  • What is the slope intercept form of y+2=-5/3(x-3)
    5·1 answer
  • A=P+PRT solve for the indicated variable R
    14·2 answers
  • 2/5 + 1/10= In simplest form<br> A. 3/15<br> B. 5/10<br> C. 1/4<br> D. 1/2
    5·2 answers
  • Click on the graphic to select the figure that would make the following "a reflection in line k."
    14·1 answer
  • The sum of 4x² + x - 8 and x² + 9 can be expressed as​
    15·2 answers
  • At the beginning of the school year, Jamie had $500 in her savings account. She wants to have at least $200 left in the account
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!