Answer:
PQ = 5 units
QR = 8 units
Step-by-step explanation:
Given
P(-3, 3)
Q(2, 3)
R(2, -5)
To determine
The length of the segment PQ
The length of the segment QR
Determining the length of the segment PQ
From the figure, it is clear that P(-3, 3) and Q(2, 3) lies on a horizontal line. So, all we need is to count the horizontal units between them to determine the length of the segments P and Q.
so
P(-3, 3), Q(2, 3)
PQ = 2 - (-3)
PQ = 2+3
PQ = 5 units
Therefore, the length of the segment PQ = 5 units
Determining the length of the segment QR
Q(2, 3), R(2, -5)
(x₁, y₁) = (2, 3)
(x₂, y₂) = (2, -5)
The length between the segment QR is:




Apply radical rule: ![\sqrt[n]{a^n}=a,\:\quad \mathrm{\:assuming\:}a\ge 0](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Ba%5En%7D%3Da%2C%5C%3A%5Cquad%20%5Cmathrm%7B%5C%3Aassuming%5C%3A%7Da%5Cge%200)

Therefore, the length between the segment QR is: 8 units
Summary:
PQ = 5 units
QR = 8 units
Translation i think. because it is not reflection nor rotation
This question is asking us to add the numbers together to create the sum of drinks.
210 + 195 = 405
Why tho?
1 : 0 + 5 = 5
2 : 1 + 9 = 10 Carry the one.
3 : 2 + 1 = 3 + 1 = 4
=405
Hope helps!-Aparri
The answer is 13.
You can evaluate this by substituting x for 5 in the expression.
4x-7
4(5)-7
20-7
13
See the solution in the pdf file attached. Please, let me know if it is satisfactory for you.