21−=2(2−)=2cos(−1)+2 sin(−1)
−1+2=−1(2)=−1(cos2+sin2)=cos2+ sin2
Is the above the correct way to write 21− and −1+2 in the form +? I wasn't sure if I could change Euler's formula to =cos()+sin(), where is a constant.
complex-numbers
Share
Cite
Follow
edited Mar 6 '17 at 4:38
Richard Ambler
1,52199 silver badges1616 bronze badges
asked Mar 6 '17 at 3:34
14wml
23122 silver badges99 bronze badges
Add a comment
1 Answer
1
No. It is not true that =cos()+sin(). Notice that
1=1≠cos()+sin(),
for example consider this at =0.
As a hint for figuring this out, notice that
+=ln(+)
then recall your rules for logarithms to get this to the form (+)ln().
Answer:
Step-by-step explanation:
<u>Given vertices of triangle:</u>
- A(1, 2), B(3, 4), C(5, 0)
<u>The centroid is found as the average of x- and y- coordinates of three vertices:</u>
- C = ((x₁ + x₂ + x₃)/3, (y₁ + y₂ + y₃)/3)
<u>Substitute the coordinates into formula:</u>
- C = ((1 + 3 + 5)/3, (2 + 4 + 0)/3) = (3, 2)
Correct choice is B
Answer:
12.57 yards
Step-by-step explanation:
The circumference of a circle is denoted by:
, where d is the diameter.
Here, we are given the diameter, so d = 4.
Now, plug this into the equation:

≈ 12.57
The circumference is about 12.57 yards.
Hope this helps!
First of all, the square root of 28 is 5.3. That is because 5.3*5.3=28.09 but mainly just 28. So now that we know what the square root of 28 is now we can multiply it by 3.
5.3*3= 15.9
Your final answer is 15.9