1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sloan [31]
3 years ago
5

How do you round an irrational number to the nearest hundredth

Mathematics
1 answer:
MariettaO [177]3 years ago
7 0
To round to the nearest cent, nearest penny, or nearest hundredth, you will need to locate the hundredths place. Then look at the digit to the right. If it is 5 or above, the number in the hundredths place will be increased by 1 and all the rest of the numbers after it are dropped. If the number is 4 or below, you leave the digit in the hundredths place alone and drop all the rest of the numbers after. 

<span>Just remember, if the problem asks you to round to the nearest hundredth, make the end result look like money, meaning only two digits after the decimal point!</span>
You might be interested in
Kevin will attend college where tuition is $11,000 a year. Books and supplies cost $900, housing and food are $8500, transportat
nignag [31]
C is the correct answer

8 0
3 years ago
Pls help me
Vladimir [108]
<h3>Learning Task 1</h3>

Correct responses;

\displaystyle 1. \hspace{0.3 cm} 7^{-1} = \frac{1}{7}

2. (14·a·b·c)⁰ = 1

\displaystyle 3. \hspace{0.3 cm} 10^{-9} = \frac{1}{10^9}

4. 5·(x·y)⁰ = 5

5. 0¹⁵ = 0

\displaystyle 6. \hspace{0.3 cm} \frac{24 \cdot x^8 \cdot y^4}{6 \cdot x^5 \cdot y^4} = 4 \cdot x^3

\displaystyle 7. \hspace{0.3 cm} \left(\frac{5 \cdot x^0}{y} \right)^{-1} = \frac{y}{5}

8. \hspace{0.3 cm}\displaystyle \frac{120 \cdot a^5 \cdot b^6  \cdot c^{-5} }{12 \cdot a^{-2} \cdot b^0  \cdot c^{2}}  = \frac{10 \cdot a^7  \cdot b^6}{c^7}

\displaystyle 9. \hspace{0.3 cm} \frac{(4 \cdot x)^0  \cdot y^{-5} \cdot z^{-2} }{(234  \cdot x  \cdot y \cdot z)^0}  =  \frac{1}{y^{5} \cdot z^2}

\displaystyle 10. \hspace{0.3 cm} \left(\frac{(5 \cdot x \cdot y)^0}{10} \right)^{-2} = 100

11. \displaystyle \hspace{0.3 cm} \left(\frac{(a \cdot b)}{9} \right)^{-1} = \frac{9}{a \cdot b}

\displaystyle 12. \hspace{0.3 cm} \frac{9}{x^{-2}}  = 9 \cdot x^2

13. \displaystyle \hspace{0.3 cm} \frac{12 \cdot b^{-3}}{a^{-4}}  = \frac{12 \cdot a^4}{b^3}

14. \displaystyle \hspace{0.3 cm} \frac{1}{a^{-5 \cdot n}}  =a^{5 \cdot n}

15. \displaystyle \hspace{0.3 cm} \left(\frac{1}{2} \right)^{-5} = 32

<h3>Methods by which the above expressions are simplified</h3>

The given expressions expressed into non zero and non negative exponents are;

\displaystyle 1. \hspace{0.3 cm} \mathbf{7^{-1}} = \underline{\frac{1}{7}}

2. (14·a·b·c)⁰ = 14⁰ × a⁰ × b⁰ × c⁰ = 1 × 1 × 1 × 1 =<u> 1</u>

\displaystyle 3. \hspace{0.3 cm}  \mathbf{ 10^{-9}} =  \underline{ \frac{1}{10^9}}

4. 5·(x·y)⁰ = 5 × x⁰ × y⁰ = 5 × 1 × 1 = <u>5</u>

5. 0¹⁵ = <u>0</u>

\displaystyle 6. \hspace{0.3 cm}  \mathbf{\frac{24 \cdot x^8 \cdot y^4}{6 \cdot x^5 \cdot y^4}} = \frac{ 4 \times 6 \times x^5 \times x^3 \times y^4}{6 \times x^5 \times y^4} = \underline{4 \cdot x^3}

\displaystyle 7. \hspace{0.3 cm}  \mathbf{\left(\frac{5 \cdot x^0}{y} \right)^{-1} }= \frac{1}{\frac{5 \times 1}{y} } = \underline{\frac{y}{5}}

8. \hspace{0.3 cm}\displaystyle  \mathbf{\frac{120 \cdot a^5 \cdot b^6  \cdot c^{-5} }{12 \cdot a^{-2} \cdot b^0  \cdot c^{2}}}  = 10 \cdot a^{5 - (-2)} \cdot  b^{6 - 0}  \cdot c^{-5 -2} = \underline{\frac{10 \cdot a^7  \cdot b^6}{c^7}}

\displaystyle 9. \hspace{0.3 cm}  \mathbf{\frac{(4 \cdot x)^0  \cdot y^{-5} \cdot z^{-2} }{(234  \cdot x  \cdot y \cdot z)^0}}  = y^{-5} \cdot z^{-2} = \underline{\frac{1}{y^{5} \cdot z^2}}

\displaystyle 10. \hspace{0.3 cm} \mathbf{\left(\frac{(5 \cdot x \cdot y)^0}{10} \right)^{-2}} = \left(\frac{1}{10} \right)^{-2} = \frac{1}{\left(\frac{1}{10} \right)^2 } = \frac{1}{\frac{1}{100} } = \underline{100}

11. \displaystyle \hspace{0.3 cm}  \mathbf{\left(\frac{(a \cdot b)}{9} \right)^{-1}} = \frac{1}{\left(\frac{(a \cdot b)}{9} \right) }  = \underline{\frac{9}{a \cdot b}}

\displaystyle 12. \hspace{0.3 cm} \mathbf{\frac{9}{x^{-2}}}  = \frac{9}{\frac{1}{x^2} }  = \underline{9 \cdot x^2}

13. \displaystyle \hspace{0.3 cm}  \mathbf{\frac{12 \cdot b^{-3}}{a^{-4}}}  = 12 \cdot \frac{b^{-3}}{a^{-4}} =12 \cdot \frac{1}{\frac{b^3}{a^4} }  = 12 \cdot \frac{a^4}{b^3}  = \underline{\frac{12 \cdot a^4}{b^3}}

14. \displaystyle \hspace{0.3 cm}  \mathbf{\frac{1}{a^{-5 \cdot n}}}  = \frac{1}{\frac{1}{a^{5 \cdot n}} } = \underline{a^{5 \cdot n}}

15. \displaystyle \hspace{0.3 cm}  \mathbf{\left(\frac{1}{2} \right)^{-5}} = \frac{1}{\left(\frac{1}{2}  \right)^5}  = 2^5 = \underline{32}

Learn more about the laws of indices here:

brainly.com/question/8959311

6 0
2 years ago
Determine if the number provided is a solution to the equation: 4x-1=2; when x = 1/2
Tomtit [17]

Hey!

------------------------------------------------

Steps To Solve:

~Substitute

4(1/2) - 1 = 2

~Simplify

2 - 1 = 2

1 ≠ 2

------------------------------------------------

Answer:

\large\boxed{\frac{1}{2}~is~not~a~solution~to~the~equation }

------------------------------------------------

Hope This Helped! Good Luck!

4 0
3 years ago
Complete the equation to show the relationship between the number of buses, x, and the number of people that can be transported,
kondaur [170]

Answer:

y = 40\cdot k

Step-by-step explanation:

Let suppose that each bus has the same capacity and exists a direct proportionality between the amount of people that is transported and the number of buses:

y \propto x

y = k \cdot x

Where k is the proportionality constant, which is equivalent to the maximum capacity of each bus. In that case, the quantity of people that is transported on 40 buses is:

y = 40\cdot k

3 0
4 years ago
Under his cell phone plan, Owen pays a flat cost of $46 per month and $3 per gigabyte, or part of a gigabyte. (For example, if h
just olya [345]

Answer:

4 gigs maybe

Step-by-step explanation:

5 0
3 years ago
Other questions:
  • A rental store has 56 umbrellas and 24 surfboards. Which ratio describes the relationship of surfboards to umbrellas?​
    12·1 answer
  • Suppose that the probability that a child living in an urban area in the United States is obese is 20%. If a social worker sees
    13·1 answer
  • How much money would Madison make if her “proofreading” money was 20% less than what she was making (remember she used to get $1
    9·1 answer
  • If 5/12 visitors are adults and 3/10 were men what fraction were men?
    9·1 answer
  • If a original image is 2 inches and a scale drawing is 3.5 inches what is the scale factor?
    15·1 answer
  • Graph: y + 2 = 2(x + 3)
    5·1 answer
  • Each morning papa notes the birds feeding on his birdfeeder. So far this month he has seen 59 blue jays, 68 black crows, 12 red
    9·1 answer
  • Gf 2 x is equal to 7 find the value of x​
    14·1 answer
  • Calculate the gradient of AC<br>​
    15·1 answer
  • 4. Write an equation that represents the line graphed below.<br> CCP
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!