Answer:
The square root of 3 is the positive real number that, when multiplied by itself, gives the number 3. ... It is denoted by √3. The square root of 3 is an irrational number.
Step-by-step explanation:
Answer:
(x + 4)^2 + (y - 8)^2 = 81
or
(x + 4)^2 + (y - 8)^2 = 9^2 depending on how your teacher wants it written.
Step-by-step explanation:
The standard form for a circle is
(x + h)^2 + (y + k)^2 = r^2
r is the radius.
You are given the diameter
r = d/2
r = 18/2
r = 9
So you already have the right hand side of the equation
(x + h)^2 + (y + k)^2 = 9*2
(x + h)^2 + (y + k)^2 = 81
You basically have h and k as well. They come from the center point.
h = 4
k = - 8
So the equation of the circle (and the answer) is
(x + 4)^2 + (y - 8)^2 = 81
One question remains. Why do the x and y values change signs? If you know what the distance formula is, then what you are finding is the distance r of all points on the circle from the center of the circle.
It is the distance formula that is actually the formula for the circle.
Answer: option d.
Step-by-step explanation:
To solve this problem you must keep on mind the properties of logarithms:

Therefore, knowing the properties, you can write the expression gven in the problem as shown below:

Then, the answer is the option d.
Answer:
Area of Trapezoid is 39 unit²
Step-by-step explanation:
Given as :
For A Trapezoid
The measure of base side 1 =
= 10 unit
The measure of base side 2 =
= 16 unit
The height of the Trapezoid = h = 3 unit
Let The Area of Trapezoid = A square unit
<u>Now, From Formula</u>
Area of Trapezoid =
× (sum of opposite base) × height
I.e A =
× (
+
) × h
Or, A =
× (10 unit + 16 unit) × 3 unit
Or, A =
× (26 unit) × 3 unit
Or, A =
× 78 unit²
Or, A =
unit²
I.e A = 39 unit²
So, The Area of Trapezoid = A = 39 unit²
Hence, The Area of Trapezoid is 39 unit² . Answer
Answer:
107.86 to 2 d.p.
Step-by-step explanation:
makes a triangle. 120 feet is the hypotenuse.
we want to find the opposite so we will use sine.
sin(x) = opp/hyp which means opp = sin(x)hyp.
opp = sin(64)120
opp = 107.86 to 2d.p.