Answer:
11x-15
Step-by-step explanation:
4x-8+7x-7
11x-15
Based on the characteristics of <em>linear</em> and <em>piecewise</em> functions, the <em>piecewise</em> function
is shown in the graph attached herein. (Correct choice: A)
<h3>How to determine a piecewise function</h3>
In this question we have a graph formed by two different <em>linear</em> functions. <em>Linear</em> functions are polynomials with grade 1 and which are described by the following formula:
y = m · x + b (1)
Where:
- x - Independent variable.
- y - Dependent variable.
- m - Slope
- b - Intercept
By direct observation and by applying (1) we have the following <em>piecewise</em> function:

Based on the characteristics of <em>linear</em> and <em>piecewise</em> functions, the <em>piecewise</em> function
is shown in the graph attached herein. (Correct choice: A)
To learn more on piecewise functions: brainly.com/question/12561612
#SPJ1
In order to find the vector that points from A to B we need to subtract each component of A from the corresponding component of B, according to the formula:
v(a→b)=(b1−a1,b2−a2)
In this case we have :
v(a→b)=(−5−(−8),3−(−1))
<span>v(a→b)=(3,4)
</span>To find the magnitude we use the formula:
||v|= √(v1^2)+(v1^2)
So:
||v|= √(32)+(42)
||v|= √9+16
||v|= <span>√</span>25
||v|= 5
<h3>
Answer: Bottom right corner (ie southeast corner)</h3>
This 3D solid is a strange sideways bowl shape. Each cross section is a ring to show the empty space.
======================================================
Explanation:
Check out the diagram below. The graph was created with GeoGebra. We have y = x^2 in red and x = y^2 in blue.
The gray region is the region between the two curves. We spin this gray region around the horizontal green line y = 1 to generate the answer mentioned above.
Note how (1,1) is a fixed point that does not move as this is on the line y = 1. Every other point moves to sweep through 3D space to create the solid figure. One way you can think of it is to think of propeller blades. Or you can think of a revolving door (the door is "flat" so to speak, but it sweeps out a 3D solid cylinder).