Answer: white hat hacker
Explanation:
Like other forms of hacker, white hat hackers also have wide range of knowledge of breaking into systems, overriding firewalls, bypassing security protocols and can also do all other things hackers do. But what differentiates white hat hackers is the motive behind what they do, in that they carry out all this test not for their personal gain but for the benefit of the owners and also with the approval of the owners. Because after carrying out tests on the ways of exploiting the loop holes in the system they reveal it to the manufacturer or system owners for correction.
The /etc directory contains configuration files that the system uses when the computer starts.
Answer:
- public class Main {
-
- public static void main (String [] args) {
-
- for(int i = 2; i < 10000; i++){
- if(isPrime1(i)){
- System.out.print(i + " ");
- }
- }
-
- System.out.println();
-
- for(int i = 2; i < 10000; i++){
- if(isPrime2(i)){
- System.out.print(i + " ");
- }
- }
- }
-
- public static boolean isPrime1(int n){
-
- for(int i=2; i <= n/2; i++){
- if(n % i == 0){
- return false;
- }
- }
-
- return true;
- }
-
- public static boolean isPrime2(int n){
-
- for(int i=2; i <= Math.sqrt(n); i++){
- if(n % i == 0){
- return false;
- }
- }
-
- return true;
- }
- }
<u></u>
Explanation:
Firstly, create the first version of method to identify a prime number, isPrime1. This version set the limit of the for loop as n/2. The for loop will iterate through the number from 2 till input n / 2 and check if n is divisible by current value of i. If so, return false to show this is not a prime number (Line 22 - 26). Otherwise it return true to indicate this is a prime number.
In the main program, we call the isPrime1 method by passing the i-index value as an argument within a for-loop that will iterate through the number 2 - 10000 (exclusive). If the method return true, print the current i value). (Line 5 - 9)
The most direct way to ensure all the prime numbers below 10000 are found, is to check the prime status from number 2 - 9999 which is amount to 9998 of numbers.
Next we create a second version of method to check prime, isPrime2 (Line 31 - 40). This version differs from the first version by only changing the for loop condition to i <= square root of n (Line 33). In the main program, we create another for loop and repeatedly call the second version of method (Line 13 - 17). We also get the same output as in the previous version.
Answer:
CPU
Explanation:
Central Processing UnitUnit