<span>Compare: both RNA and DNA have 3 nitrogenous bases: Adenine Cytosine and Guanine. Also b</span>oth have a phosphate groups in their nucleotides<span>
Contrast: </span>RNA is a polymer with a ribose AND a phosphate backbone. It has four different nitrogenous bases: adenine, guanine, cytosine, and uracil.
DNA<span> is a long polymer with deoxyriboses AND phosphate backbone. It also has four </span>different<span> nitrogenous bases: adenine, guanine, cytosine and thymine.
</span>
Hope this helps
Reflex action in the diagram would be the response. Diagram extracted from online.
Plants do not grow near the old copper mine because of the excess copper deposited in them impairs cellular processes and inhibits plant growth.
What are micronutrients?
These are required by plants in much smaller quantities less than 1% of the dry weight but are necessary for growth and development. There are 7 essential plant nutrients like boron (B), zinc (Zn), manganese (Mn), iron (Fe), copper (Cu), molybdenum (Mo), and, chlorine (Cl).
Copper activates some enzymes in plants that are involved in lignin synthesis and are required in the process of photosynthesis.
Excess copper causes reduced seed germination, low shoot vigour, and lower iron availability. A deficiency of copper can lead to increased to susceptibility to diseases like ergot, which can cause significant loss in the yield.
Plants growing in the old copper mine have the excess deposition of copper in one place which affects the germination of seeds hence it is found difficult to grow in the old copper mine.
Plants can grow easily in a place that is further away from the old copper mine. Because there is a high concentration of copper dissolved in water in the soil, this helps the plant to grow by exhibiting the photosynthesis process.
Learn more about micronutrients from the link given below:
brainly.com/question/7411332
#SPJ1
Answer:
See the answer below
Explanation:
Recall that: <em>Water potential = pressure potential + solute potential</em>
Since the system is an open one;
<em>Water potential = solute potential = -iCRT</em>
i = number of particles the molecle will make in water (1)
C = molar concentration
R = Pressure constant = 0.0831 liter bar/mole K
T = temperature in kelvin = 22 + 273 = 295 K
To calculate water potential on side A:
C = 1 M
Water potential = - (1 x 1 x 0.0831 x 295) = -24.51 bars
For side B:
C = 2 M
Water potential = - (1 x 2 x 0.0831 x 295) = -49.03 bars
b.
<em>Since side A has higher water potential than side B, water will flow from side A to side B until equilibrium is established between the two sides. Water always flows from the region of higher water potential to the region of lower water potential.</em>
<em />