Answer:
option c is correct.
Step-by-step explanation:
![7\left(\sqrt[3]{2x}\right)-3\left(\sqrt[3]{16x}\right)-3\left(\sqrt[3]{8x}\right)](https://tex.z-dn.net/?f=7%5Cleft%28%5Csqrt%5B3%5D%7B2x%7D%5Cright%29-3%5Cleft%28%5Csqrt%5B3%5D%7B16x%7D%5Cright%29-3%5Cleft%28%5Csqrt%5B3%5D%7B8x%7D%5Cright%29)
WE need to simplify this equation.
Solve the parenthesis of each term.
![=7\left\sqrt[3]{2x}\right-3\left\sqrt[3]{16x}\right-3\left\sqrt[3]{8x}\right](https://tex.z-dn.net/?f=%3D7%5Cleft%5Csqrt%5B3%5D%7B2x%7D%5Cright-3%5Cleft%5Csqrt%5B3%5D%7B16x%7D%5Cright-3%5Cleft%5Csqrt%5B3%5D%7B8x%7D%5Cright)
Now, We will find factors of the terms inside the square root
factors of 2: 2
factors of 16 : 2x2x2x2
factors of 8: 2x2x2
Putting these values in our equation:![=7\left(\sqrt[3]{2x}\right)-3\left(\sqrt[3]{2X2X2X2 x}\right)-3\left(\sqrt[3]{2X2X2 x}\right)\\=7\left(\sqrt[3]{2x}\right)-3\left(\sqrt[3]{2X2X2} \sqrt[3] {2 x}\right)-3\left(\sqrt[3]{2X2X2} \sqrt[3]{x}\right)\\=7\left(\sqrt[3]{2x}\right)-3\left(\sqrt[3]{2^3} \sqrt[3] {2 x}\right)-3\left(\sqrt[3]{2^3} \sqrt[3]{x}\right)\\=7\left(\sqrt[3]{2x}\right)-3*2\left(\sqrt[3] {2 x}\right)-3*2\left(\sqrt[3]{x}\right)\\=7\left(\sqrt[3]{2}\sqrt[3]{x}\right)-6\left(\sqrt[3] {2}\sqrt[3]{x})-6\left(\sqrt[3]{x}\right)](https://tex.z-dn.net/?f=%3D7%5Cleft%28%5Csqrt%5B3%5D%7B2x%7D%5Cright%29-3%5Cleft%28%5Csqrt%5B3%5D%7B2X2X2X2%20x%7D%5Cright%29-3%5Cleft%28%5Csqrt%5B3%5D%7B2X2X2%20x%7D%5Cright%29%5C%5C%3D7%5Cleft%28%5Csqrt%5B3%5D%7B2x%7D%5Cright%29-3%5Cleft%28%5Csqrt%5B3%5D%7B2X2X2%7D%20%5Csqrt%5B3%5D%20%7B2%20x%7D%5Cright%29-3%5Cleft%28%5Csqrt%5B3%5D%7B2X2X2%7D%20%5Csqrt%5B3%5D%7Bx%7D%5Cright%29%5C%5C%3D7%5Cleft%28%5Csqrt%5B3%5D%7B2x%7D%5Cright%29-3%5Cleft%28%5Csqrt%5B3%5D%7B2%5E3%7D%20%5Csqrt%5B3%5D%20%7B2%20x%7D%5Cright%29-3%5Cleft%28%5Csqrt%5B3%5D%7B2%5E3%7D%20%5Csqrt%5B3%5D%7Bx%7D%5Cright%29%5C%5C%3D7%5Cleft%28%5Csqrt%5B3%5D%7B2x%7D%5Cright%29-3%2A2%5Cleft%28%5Csqrt%5B3%5D%20%7B2%20x%7D%5Cright%29-3%2A2%5Cleft%28%5Csqrt%5B3%5D%7Bx%7D%5Cright%29%5C%5C%3D7%5Cleft%28%5Csqrt%5B3%5D%7B2%7D%5Csqrt%5B3%5D%7Bx%7D%5Cright%29-6%5Cleft%28%5Csqrt%5B3%5D%20%7B2%7D%5Csqrt%5B3%5D%7Bx%7D%29-6%5Cleft%28%5Csqrt%5B3%5D%7Bx%7D%5Cright%29)
Adding like terms we get:
![=7\left(\sqrt[3]{2}\sqrt[3]{x}\right)-6\left(\sqrt[3] {2}\sqrt[3]{x})-6\left(\sqrt[3]{x}\right\\=(\sqrt[3] {2}\sqrt[3]{x})-6\left(\sqrt[3]{x}\right)\\](https://tex.z-dn.net/?f=%3D7%5Cleft%28%5Csqrt%5B3%5D%7B2%7D%5Csqrt%5B3%5D%7Bx%7D%5Cright%29-6%5Cleft%28%5Csqrt%5B3%5D%20%7B2%7D%5Csqrt%5B3%5D%7Bx%7D%29-6%5Cleft%28%5Csqrt%5B3%5D%7Bx%7D%5Cright%5C%5C%3D%28%5Csqrt%5B3%5D%20%7B2%7D%5Csqrt%5B3%5D%7Bx%7D%29-6%5Cleft%28%5Csqrt%5B3%5D%7Bx%7D%5Cright%29%5C%5C)
![(\sqrt[3] {2}\sqrt[3]{x})-6\left(\sqrt[3]{x}\right)\\can\,\,be \,\, written\,\, as\,\,\\(\sqrt[3] {2x})-6\left(\sqrt[3]{x}\right)](https://tex.z-dn.net/?f=%28%5Csqrt%5B3%5D%20%7B2%7D%5Csqrt%5B3%5D%7Bx%7D%29-6%5Cleft%28%5Csqrt%5B3%5D%7Bx%7D%5Cright%29%5C%5Ccan%5C%2C%5C%2Cbe%20%5C%2C%5C%2C%20written%5C%2C%5C%2C%20as%5C%2C%5C%2C%5C%5C%28%5Csqrt%5B3%5D%20%7B2x%7D%29-6%5Cleft%28%5Csqrt%5B3%5D%7Bx%7D%5Cright%29)
So, option c is correct
9514 1404 393
Answer:
9. ±1, ±2, ±3, ±6
11. ±1, ±2, ±3, ±4, ±6, ±12
Step-by-step explanation:
The possible rational roots are (plus or minus) the divisors of the constant term, divided by the divisors of the leading coefficient.
Here, the leading coefficient is 1 in each case, so the possible rational roots are plus or minus a divisor of the constant term.
__
9. The constant is -6. Divisors of 6 are 1, 2, 3, 6. The possible rational roots are ...
±{1, 2, 3, 6}
__
11. The constant is 12. Divisors of 12 are 1, 2, 3, 4, 6, 12. The possible rational roots are ...
±{1, 2, 3, 4, 6, 12}
_____
A graphing calculator is useful for seeing if any of these values actually are roots of the equation. (The 4th-degree equation will have 2 complex roots.)
Answer:I actually don’t know
Step-by-step explanation:
Answer:
-0.8, -77%
Step-by-step explanation:
These have been rounded up by the way,
I converted it to decimal and percent form
Answer:
B. the initial number of packs of gum
Step-by-step explanation:
Another name for y-intercept is initial value.
I am joyous to assist you anytime.