Answer:
Dryer cost $475; Washer cost $382
Step-by-step explanation:
For this problem, we will simply set up a system of equations to find the value of each the washer (variable x) and the dryer (variable y).
We are given the washer and dryer cost $857 together.
x + y = 857
We are also given that the washer cost $93 less than the dryer.
x = y - 93
So to find the cost of the dryer, we simply need to find the value of y.
x + y = 857
x = y - 93
( y - 93 ) + y = 857
2y - 93 = 857
2y = 950
y = 475
So now we have the value of the dry to be $475. We can check this by simply plugging in the value and see if it makes sense.
x + y = 857
x + 475 = 857
x = 382
And check this value:
x = y - 93
382 ?= 475 - 93
382 == 382
Therefore, we have found the values of both the washer and the dryer.
Cheers.
Answer: 27x^5/250
Step-by-step explanation:
I assume that's a fraction on a fraction.
12x^3/25×40/9x^2 = (12x^3 × 9x^2)/1000
= 108x^5/100
= 27x^5/250
Let "c" and "q" represent the numbers of bottles of Classic and Quantum that should be produced each day to maximize profit. The problem conditions give rise to 3 inequalities:
.. 0.500c +0.550q ≤ 100 . . . . . . . liters of water
.. 0.600c +0.200q ≤ 100 . . . . . . . kg of sugar
.. 0.1c +0.2q ≤ 32 . . . . . . . . . . . . . grams of caramel
These can be plotted on a graph to find the feasible region where c and q satisfy all constraints. You find that the caramel constraint does not come into play. The graph below has c plotted on the horizontal axis and q plotted on the vertical axis.
Optimum production occurs near c = 152.17 and q = 43.48. Examination of profit figures for solutions near those values reveals the best result for (c, q) = (153, 41). Those levels of production give a profit of 6899p per day.
To maximize profit, Cartesian Cola should produce each day
.. 153 bottles of Classic
.. 41 bottles of Quantum per day.
Profit will be 6899p per day.
_____
The problem statement gives no clue as to the currency equivalent of 100p.
Answer:
Polynomial is an expression of more than two algebraic terms, especially the sum of several terms that contain different powers of the same variable(s).