Answer:
x= 3
Step-by-step explanation:
1. -5(3) + 2 = -13
2. -15 + 2 = -13 <em>A positive times a negative will always equal a negative</em>
3. -13 = -13 <em>Whenever you add anything to a negative number, the </em>
<em> number becomes smaller </em>
Ex: -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, ...........
<em>Although the number itself becomes smaller, its value </em>
<em> becomes bigger </em>
Hope this helps.
Answer:
|p| ≤ 12
Step-by-step explanation:
The absolute value of p less than or equal to 12
Answer:
The answer is x>25/46
Step-by-step explanation:
Distribute 23 through the parentheses
138x-69>6
Move constant to the the right and change the sign. 138x>6+69.
Add the numbers like this: 138x>75
Divide both sides and you'll will get x>25/46 which is your answer. Let me know if this helps
Answer:
f(-2) = 21
Step-by-step explanation:
Step 1: Define
f(x) = 3x² - 4x + 1
f(-2) is x = -2
Step 2: Substitute and Evaluate
f(-2) = 3(-2)² - 4(-2) + 1
f(-2) = 3(4) + 8 + 1
f(-2) = 12 + 9
f(-2) = 21
By definition of tangent,
tan(2<em>θ</em>) = sin(2<em>θ</em>) / cos(2<em>θ</em>)
Recall the double angle identities:
sin(2<em>θ</em>) = 2 sin(<em>θ</em>) cos(<em>θ</em>)
cos(2<em>θ</em>) = cos²(<em>θ</em>) - sin²(<em>θ</em>) = 2 cos²(<em>θ</em>) - 1
where the latter equality follows from the Pythagorean identity, cos²(<em>θ</em>) + sin²(<em>θ</em>) = 1. From this identity we can solve for the unknown value of sin(<em>θ</em>):
sin(<em>θ</em>) = ± √(1 - cos²(<em>θ</em>))
and the sign of sin(<em>θ</em>) is determined by the quadrant in which the angle terminates.
<em />
We're given that <em>θ</em> belongs to the third quadrant, for which both sin(<em>θ</em>) and cos(<em>θ</em>) are negative. So if cos(<em>θ</em>) = -4/5, we get
sin(<em>θ</em>) = - √(1 - (-4/5)²) = -3/5
Then
tan(2<em>θ</em>) = sin(2<em>θ</em>) / cos(2<em>θ</em>)
tan(2<em>θ</em>) = (2 sin(<em>θ</em>) cos(<em>θ</em>)) / (2 cos²(<em>θ</em>) - 1)
tan(2<em>θ</em>) = (2 (-3/5) (-4/5)) / (2 (-4/5)² - 1)
tan(2<em>θ</em>) = 24/7