The Oxidation-Fermentation Test is used to differentiate bacteria built on their capability to oxidize or ferment specific sugars.
Once microbes are inoculated,-One tube is sealed with a layer of sterile mineral oil to promote anaerobic growth and fermentation.-The other tube is left unsealed to allow aerobic growth and oxidation.
Organisms able to ferment the carbohydrate or ferment and oxidize the carbohydrate will turn the sealed and unsealed yellow throughout.
Organisms able only to oxidize the sugar will turn the unsealed yellow medium and leave the sealed medium green or blue.
Fragile fermenters will convert both tubes slightly yellow at the top.
Organisms not able to metabolize the sugar will either produce no color change or will turn the medium blue due to alkaline products from amino acids degradation.
Since Pair #1 showed complete yellowing for sealed and unsealed, these Organisms able to ferment the carbohydrate or ferment and oxidize the carbohydrate. So our interpretation will be that the organism has: Oxidation and fermentation OR fermentation only.
For tubes #2 and #3, the sealed tubes were green throughout suggests that they need oxygen for aerobic growth, and the fact that their unsealed tubes showed light yellowing is evidence for oxidation. Sealed - Green and Unseal - Yellow. Our interpretation for these pairs of tubes would be : Oxidation
Tube 1 can be either Oxidation and fermentation OR fermentation only. So reliability of this needs to be confirmed more with additional testing.
Tubes 2 and 3 are most reliable because they can only be oxidation only and no fermentation.
According to the observation, I would conclude that the fungus has asexual form of reproduction. This is because asexual spores germinate and produce new hyphae anytime and anywhere as long as the conditions are favorable. Sexual pores on the other hand need a time of dormancy after the are formed before they produce more hyphae.
Answer:
The H+ ions moves outside.
Explanation:
The H+ ions moves outside the mitochondria of the cell if the concentration of H ions were higher inside the mitochondrion than outside environment of the mitochondrion in order to equalize the pH or H+ ions concentration of both inner side of mitochondria and outer side environment. This movement of H+ ions from a region of higher concentration to the region of lower through a semi-permeable membrane is known as osmosis which has a positive effect on the cell as well as organelles of the cell.
Answer:
All
Explanation:
You would need carbon dioxide to be able to sustain life forms such as plants, warm enough temperatures to allow the development of animals, (because they cannot be frozen), they would, of course, need oxygen to allow anyone to breathe, and finally liquid water to sustain healthy life, because we must hydrate that is necessary for survival.
Answer:
Option B, Apply auxin directly to the lower part of the stem opposite from the direction you want the stem to bend.
Explanation:
Options for the question are
A) Apply auxin directly to the shoot tip on the side to which you want the tip to bend.
B) Apply auxin directly to the lower part of the stem opposite from the direction you want the stem to bend.
C) Inject compounds that block auxin receptors into the part of the stem opposite from the direction you want the stem to bend.
D) Plant the roots in two different pots, and apply auxin to the root bucket that is on the same side as the direction you want the plant to bend.
Solution
Auxin is responsible for stem elongation by inhibiting growth of lateral buds. The movement of auxin is opposite to the direction of elongation of cells. Generally, Auxin moves to the dark side which is opposite to the direction i.e the lighter side in which cell elongate . Due to this growth pattern, the stem tip gets curved towards the light.
Hence, option B is correct