Answer:
the angle shown is a straight angle value of which is equal to 180°
3x + 30. 6 = 180
3x = 180 - 30. 6
3x = 149.4
<h3>x = 49.8</h3>
Use Mathpapa or symbolab, they are both very useful resources, and have saved me many times
First, we need to set up our two equations. For the picture of this scenario, there is one length (L) and two widths (W) because the beach removes one of the lengths. We will have a perimeter equation and an area equation.
P = L + 2W
A = L * W
Now that we have our equations, we need to plug in what we know, which is the 40m of rope.
40 = L + 2W
A = L * W
Then, we need to solve for one of the variables in the perimeter equation. I will solve for L.
L = 40 - 2W
Now, we can substitute the value for L into L in the area equation and get a quadratic equation.
A = W(40 - 2W)
A = -2W^2 - 40W
The maximum area will occur where the derivative equals 0, or at the absolute value of the x-value of the vertex of the parabola.
V = -b/2a
V = 40/2(2) = 40/4 = 10
Derivative:
-4w - 40 = 0
-4w = 40
w = |-10| = 10
To find the other dimension, use the perimeter equation.
40 = L + 2(10)
40 = L + 20
L = 20m
Therefore, the dimensions of the area are 10m by 20m.
Hope this helps!
There is a not so well-known theorem that solves this problem.
The theorem is stated as follows:
"Each angle bisector of a triangle divides the opposite side into segments proportional in length to the adjacent sides" (Coxeter & Greitzer)
This means that for a triangle ABC, where angle A has a bisector AD such that D is on the side BC, then
BD/DC=AB/AC
Here either
BD/DC=6/5=AB/AC, where AB=6.9,
then we solve for AC=AB*5/6=5.75,
or
BD/DC=6/5=AB/AC, where AC=6.9,
then we solve for AB=AC*6/5=8.28
Hence, the longest and shortest possible lengths of the third side are
8.28 and 5.75 units respectively.
Exchange : 63m = 6300 cm; 56m21cm= 5621cm
So the lengths of the ribbon will be left is : 6300 - 5621 = 679cm = 6.79 m
Hope it helps! If it is, Brainliest please!