1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PIT_PIT [208]
3 years ago
14

Pls help explain this math problem?

Mathematics
2 answers:
nikitadnepr [17]3 years ago
5 0
The definite integral from x=2 to x=k of (6x-5) is

     x^2
6*------- - 5x, [2,k]    or    3[ k^2 -5k] - 3 [ 2^2 - 5(2) ]
       2                       or
                                       3[k^2 - 5k] - 3[4-10]  =  10 (as given)

                                        3k^2 -15k + 18 = 10, or
                                        3k^2 - 15k + 8 = 0

This is a quadratic equation; solve it using the quadratic formula:
        -(-15) plus or minus sqrt( [-15]^2 - 4(3)(8) )
k = ------------------------------------------------------------
                                           6
         15 plus or minus 26.36
   = ------------------------------------
                         6
TEA [102]3 years ago
4 0
\bf \displaystyle \int\limits_{2}^{k} (6x-5)dx\implies \displaystyle \int\limits_{2}^{k}6x\cdot dx\displaystyle -\int\limits_{2}^{k}5\cdot dx\implies 6\displaystyle \int\limits_{2}^{k}x\cdot dx-\displaystyle \int\limits_{2}^{k}5\cdot dx
\\\\\\
\left. 3x^2~-~5x \cfrac{}{} \right]_{2}^{k}\implies [3k^2~-~5k]~~-~~[3(2)^2~-~5(2)]~~=~~\boxed{10}
\\\\\\
3k^2-5k~~-~~[12-10]~~=~~10\implies 3k^2-5k-2=10
\\\\\\
3k^2-5k-12=0\implies (3k+4)(k-3)=0\implies k=
\begin{cases}
-\frac{4}{3}\\\\
k=3
\end{cases}
You might be interested in
Find the measure of each angle indicated<br> 50°<br> A) 65°<br> C) 50°<br> B) 45°<br> D) 46°
AURORKA [14]

Answer:

B

Step-by-step explanation:

i estimated this answer

8 0
3 years ago
Read 2 more answers
The boys had 5 4 6 gallons of water to share throughout the day. James drank 1 1 3 5 6 1 2 gallons and Simon drank 2 3 gallon. H
dsp73

Answer:

1\frac{1}{3}

Step-by-step explanation:

Total Volume of Water = 5\frac{4}{6}

Volume drunk by James =1\frac{1}{3}

Volume drunk by Simon =\frac{2}{3}

Volume drunk by Matthew = 1\frac{1}{2}

Volume drunk by Gilbert =\frac{5}{6}

Total Volume Drunk (i.e. The Sum) = 1\frac{1}{3} + \frac{2}{3} + 1\frac{1}{2} +\frac{5}{6}=\frac{13}{3}

Volume of water Left = Total Volume of Water-Total Volume Drunk

= 5\frac{4}{6}-\frac{13}{3} =\frac{4}{3}=1\frac{1}{3}

3 0
4 years ago
Read 2 more answers
I need some help. Please
Ilya [14]

Are you able to ask your teacher?

7 0
3 years ago
If sin A = 3÷<br>5 then <br><br>find sin²A​
Korolek [52]

Answer:

12

Step-by-step explanation:

7 0
3 years ago
Write an inequality that describes the graph.<br><br> PLEASE HELP ASAP
Ugo [173]

Answer:

When writing an inequality from a graph, there are a few things we need to do:

Determine the equation of the line. This gives us the general form of our inequality once we remove the equal sign.

Note whether the line is dotted or solid. ...

Use the graph's shading to determine which way you

5 0
2 years ago
Other questions:
  • The price of a gallon of milk was $2.65. The price rose y dollars after the last hurricane. Then the price dropped $0.15 and lat
    11·1 answer
  • Can anybody help me
    10·2 answers
  • What is the volume of the tilted solid
    12·1 answer
  • How many times can 1 13/16 go into 12 1/8
    5·1 answer
  • Find the length of the segment with endpoints ( 8,3) and (10, -2).
    8·1 answer
  • The acceleration of an object due to gravity is 32 feet per second. What is acceleration due to gravity in inches per second?
    7·1 answer
  • If a+b+c=a*b*c then how many real number solutions are possible
    5·1 answer
  • 2x - y - 4 = 0
    6·1 answer
  • What is the first step to solve for 7 − 4 = 18? *
    10·1 answer
  • Use the Pythagorean theorem to find the length of TI. Enter the answer in simplified form.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!