Answer:¿Qué es lo contrario de estos estadistas?
Step-by-step explanation:
What is the opposite of these statesment
Answer:
![E[X^2]= \frac{2!}{2^1 1!}= 1](https://tex.z-dn.net/?f=E%5BX%5E2%5D%3D%20%5Cfrac%7B2%21%7D%7B2%5E1%201%21%7D%3D%201)

Step-by-step explanation:
For this case we can use the moment generating function for the normal model given by:
![\phi(t) = E[e^{tX}]](https://tex.z-dn.net/?f=%20%5Cphi%28t%29%20%3D%20E%5Be%5E%7BtX%7D%5D)
And this function is very useful when the distribution analyzed have exponentials and we can write the generating moment function can be write like this:

And we have that the moment generating function can be write like this:

And we can write this as an infinite series like this:

And since this series converges absolutely for all the possible values of tX as converges the series e^2, we can use this to write this expression:
![E[e^{tX}]= E[1+ tX +\frac{1}{2} (tX)^2 +....+\frac{1}{n!}(tX)^n +....]](https://tex.z-dn.net/?f=E%5Be%5E%7BtX%7D%5D%3D%20E%5B1%2B%20tX%20%2B%5Cfrac%7B1%7D%7B2%7D%20%28tX%29%5E2%20%2B....%2B%5Cfrac%7B1%7D%7Bn%21%7D%28tX%29%5En%20%2B....%5D)
![E[e^{tX}]= 1+ E[X]t +\frac{1}{2}E[X^2]t^2 +....+\frac{1}{n1}E[X^n] t^n+...](https://tex.z-dn.net/?f=E%5Be%5E%7BtX%7D%5D%3D%201%2B%20E%5BX%5Dt%20%2B%5Cfrac%7B1%7D%7B2%7DE%5BX%5E2%5Dt%5E2%20%2B....%2B%5Cfrac%7B1%7D%7Bn1%7DE%5BX%5En%5D%20t%5En%2B...)
and we can use the property that the convergent power series can be equal only if they are equal term by term and then we have:
![\frac{1}{(2k)!} E[X^{2k}] t^{2k}=\frac{1}{k!} (\frac{t^2}{2})^k =\frac{1}{2^k k!} t^{2k}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%282k%29%21%7D%20E%5BX%5E%7B2k%7D%5D%20t%5E%7B2k%7D%3D%5Cfrac%7B1%7D%7Bk%21%7D%20%28%5Cfrac%7Bt%5E2%7D%7B2%7D%29%5Ek%20%3D%5Cfrac%7B1%7D%7B2%5Ek%20k%21%7D%20t%5E%7B2k%7D)
And then we have this:
![E[X^{2k}]=\frac{(2k)!}{2^k k!}, k=0,1,2,...](https://tex.z-dn.net/?f=E%5BX%5E%7B2k%7D%5D%3D%5Cfrac%7B%282k%29%21%7D%7B2%5Ek%20k%21%7D%2C%20k%3D0%2C1%2C2%2C...)
And then we can find the ![E[X^2]](https://tex.z-dn.net/?f=E%5BX%5E2%5D)
![E[X^2]= \frac{2!}{2^1 1!}= 1](https://tex.z-dn.net/?f=E%5BX%5E2%5D%3D%20%5Cfrac%7B2%21%7D%7B2%5E1%201%21%7D%3D%201)
And we can find the variance like this :
![Var(X^2) = E[X^4]-[E(X^2)]^2](https://tex.z-dn.net/?f=Var%28X%5E2%29%20%3D%20E%5BX%5E4%5D-%5BE%28X%5E2%29%5D%5E2)
And first we find:
![E[X^4]= \frac{4!}{2^2 2!}= 3](https://tex.z-dn.net/?f=E%5BX%5E4%5D%3D%20%5Cfrac%7B4%21%7D%7B2%5E2%202%21%7D%3D%203)
And then the variance is given by:

We have been given angle A as 75 degrees and sides a = 2 and b = 3.
Using Sine rule, we can set up:

Upon substituting the given values of angle A, and sides a and b, we get:

Upon solving this equation for B, we get:

Since we know that value of Sine cannot be more than 1. Hence there are no values possible for B.
Hence, the triangle is not possible. Therefore, first choice is correct.

should be the right answer