The equivalent of 1.7 km to centimeters is 170000
Because if 1 km is equal to 1 and 7 is equal to 700000 then the equivalent of 1.7 km is 170000
That's it
Check the picture below.
since we know the radius of the larger semicircle is 8, thus its diameter is 16, which is the length of one side of the equilateral triangle. We also know the smaller semicircle has a radius of 1/3, and thus a diameter of 2/3, namely the lenght of one side of the small equilateral triangle.
now, if we just can get the area of the larger figure and the area of the smaller one and subtract the smaller from the larger, we'll be in effect making a hole/gap in the larger and what's leftover is the shaded figure.
![\bf \stackrel{\textit{area of a semi-circle}}{A=\cfrac{1}{2}\pi r^2\qquad r=radius}~\hspace{10em}\stackrel{\textit{area of an equilateral triangle}}{A=\cfrac{s^2\sqrt{3}}{4}\qquad s=\stackrel{side's}{length}} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{\Large Areas}}{\left[ \stackrel{\textit{larger figure}}{\cfrac{1}{2}\pi 8^2~~+~~\cfrac{16^2\sqrt{3}}{4}} \right]\qquad -\qquad \left[ \cfrac{1}{2}\pi \left( \cfrac{1}{3} \right)^2 +\cfrac{\left( \frac{2}{3} \right)^2\sqrt{3}}{4}\right]}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Ctextit%7Barea%20of%20a%20semi-circle%7D%7D%7BA%3D%5Ccfrac%7B1%7D%7B2%7D%5Cpi%20r%5E2%5Cqquad%20r%3Dradius%7D~%5Chspace%7B10em%7D%5Cstackrel%7B%5Ctextit%7Barea%20of%20an%20equilateral%20triangle%7D%7D%7BA%3D%5Ccfrac%7Bs%5E2%5Csqrt%7B3%7D%7D%7B4%7D%5Cqquad%20s%3D%5Cstackrel%7Bside%27s%7D%7Blength%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7B%5CLarge%20Areas%7D%7D%7B%5Cleft%5B%20%5Cstackrel%7B%5Ctextit%7Blarger%20figure%7D%7D%7B%5Ccfrac%7B1%7D%7B2%7D%5Cpi%208%5E2~~%2B~~%5Ccfrac%7B16%5E2%5Csqrt%7B3%7D%7D%7B4%7D%7D%20%5Cright%5D%5Cqquad%20-%5Cqquad%20%5Cleft%5B%20%5Ccfrac%7B1%7D%7B2%7D%5Cpi%20%5Cleft%28%20%5Ccfrac%7B1%7D%7B3%7D%20%5Cright%29%5E2%20%2B%5Ccfrac%7B%5Cleft%28%20%5Cfrac%7B2%7D%7B3%7D%20%5Cright%29%5E2%5Csqrt%7B3%7D%7D%7B4%7D%5Cright%5D%7D)
![\bf \left[ 32\pi +64\sqrt{3} \right]\qquad -\qquad \left[ \cfrac{\pi }{18}+\cfrac{\frac{4}{9}\sqrt{3}}{4} \right] \\\\\\ \left[ 32\pi +64\sqrt{3} \right]\qquad -\qquad \left[ \cfrac{\pi }{18}+\cfrac{\sqrt{3}}{9} \right]~~\approx~~ 211.38 - 0.37~~\approx~~ 211.01](https://tex.z-dn.net/?f=%5Cbf%20%5Cleft%5B%2032%5Cpi%20%2B64%5Csqrt%7B3%7D%20%5Cright%5D%5Cqquad%20-%5Cqquad%20%5Cleft%5B%20%5Ccfrac%7B%5Cpi%20%7D%7B18%7D%2B%5Ccfrac%7B%5Cfrac%7B4%7D%7B9%7D%5Csqrt%7B3%7D%7D%7B4%7D%20%5Cright%5D%20%5C%5C%5C%5C%5C%5C%20%5Cleft%5B%2032%5Cpi%20%2B64%5Csqrt%7B3%7D%20%5Cright%5D%5Cqquad%20-%5Cqquad%20%5Cleft%5B%20%5Ccfrac%7B%5Cpi%20%7D%7B18%7D%2B%5Ccfrac%7B%5Csqrt%7B3%7D%7D%7B9%7D%20%5Cright%5D~~%5Capprox~~%20211.38%20-%200.37~~%5Capprox~~%20211.01)
Fraction does not make sense this question
Answer:
m = -1/3
Step-by-step explanation:
There are two ways that you can use to get this answer.
The first way is to use the graph. You can see that to get from Point A to Point B, the dots go over 1 and down 3. For the fraction, you put the amount that you go to the side (1) over the amount you go down (3) to get 1/3. Since the points go down gradually, the slope is negative, so 1/3 becomes -1/3.
The second way is to take the two points, (1, 4) and (2, 1) and subtract them. First, subtract the x-coordinate from Point B from Point A to get -1. Then do the same thing with the y-coordinates to get 3. Put the -1 over 3 because x comes before y, and you have your slope.
I hope this helped :)
The hypotenuse formula is a^2+b^2=c^2
so each side a=1
b=1
1^2 +1^2=c^2
1+1= c^2 so the hypotenuse equals 2