Answer:
The value of MB = 8.4
Step-by-step explanation:
We know that the point of intersection of the Medians of a triangle is called the centroid of a triangle.
Thus,
For the given triangle ΔJKL,
- The point M is the centroid of the triangle.
We also know that the centroid is 2/3 of the distance from each vertex to the midpoint of the opposite side.
Also, each Median is split into two parts such that the longer part is 2 times the length of the smaller part.
In our case,
The median KB is split into two parts such that the longer part KM is 2 times the length of the smaller part MB.
i.e.
KM = 2 MB
Given KM = 16.8
so substitute KM = 16.8 in the equation KM = 2 MB
16.8 = 2 MB
MB = 16.8/2
MB = 8.4
Therefore, the value of MB = 8.4
Answer:
e) 0.14
Step-by-step explanation:
We solve this problem building the Venn's diagram of these probabilities.
I am going to say that:
A is the probability that a driver does not have a valid driver's license.
B is the probability that a driver does not have insurance.
We have that:

In which a is the probability that a driver does not have a valid driver's license but has insurance and
is the probability that a driver does not have any of these things.
By the same logic, we have that:

We start finding these values from the intersection.
4% have neither
This means that 
6% of all drivers have no insurance
This means that
. So



12% of all drivers do not have a valid driver’s license
This means that 
So



The probability that a randomly selected driver either fails to have a valid license or fails to have insurance is about

So the correct answer is:
e) 0.14
Answer: The answer is eight hours and algebraic algebraic expression is 8x+17
Step-by-step explanation:
Answer:
COD, BC, intersecting
Step-by-step explanation: