Answer:
a) Y(x) = {900, x≤30; 900-40(x-30), x>30}
b) T(x) = {900x, x≤30; 2100x-40x², x>30}
c) dT/dx = {900, x≤30; 2100-80x, x>30}
Step-by-step explanation:
a) The problem statement gives the function for x ≤ 30, and gives an example of evaluating the function for x = 35. So, replacing 35 in the example with x gives the function definition for x > 30.
![\displaystyle Y(x)=\left\{\begin{array}{lcl}900&\text{for}&x\le 30\\900-40(x-30)&\text{for}&x>30\end{array}\right.](https://tex.z-dn.net/?f=%5Cdisplaystyle%20Y%28x%29%3D%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Blcl%7D900%26%5Ctext%7Bfor%7D%26x%5Cle%2030%5C%5C900-40%28x-30%29%26%5Ctext%7Bfor%7D%26x%3E30%5Cend%7Barray%7D%5Cright.)
__
b) The yield per acre is the product of the number of trees and the yield per tree:
T(x) = x·Y(x)
![\displaystyle T(x)=\left \{\begin{array}{lcl}900x&\text{for}&x\le 30\\2100x-40x^2& \text{for}&x>30\end{array}\right.](https://tex.z-dn.net/?f=%5Cdisplaystyle%20T%28x%29%3D%5Cleft%20%5C%7B%5Cbegin%7Barray%7D%7Blcl%7D900x%26%5Ctext%7Bfor%7D%26x%5Cle%2030%5C%5C2100x-40x%5E2%26%20%5Ctext%7Bfor%7D%26x%3E30%5Cend%7Barray%7D%5Cright.)
__
c) The derivative is ...
![\displaystyle\frac{dT}{dx}=\left \{\begin{array}{lcl}900&\text{for}&x\le 30\\2100-80x& \text{for}&x>30\end{array}\right.](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cfrac%7BdT%7D%7Bdx%7D%3D%5Cleft%20%5C%7B%5Cbegin%7Barray%7D%7Blcl%7D900%26%5Ctext%7Bfor%7D%26x%5Cle%2030%5C%5C2100-80x%26%20%5Ctext%7Bfor%7D%26x%3E30%5Cend%7Barray%7D%5Cright.)
_____
The attached graph shows the yield per acre (purple, overlaid by red for x<30), the total yield (black), and the derivative of the total yield (red). You will note the discontinuity in the derivative at x=30, where adding one more tree per acre suddenly makes the rate of change of yield be negative.