1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Softa [21]
3 years ago
15

How do you round 5 1/8 to the nearest whole number

Mathematics
2 answers:
choli [55]3 years ago
5 0
To round you must see if the fraction is greater or less than a half to see if you round up or down. 1/8 is less than 1/2, so you must round down. So the answer is 5.
qwelly [4]3 years ago
3 0
You look at the fraction: 1/8
You determine if it's closer to 0, 0.5, or 1.
In this case it is closer to 0.
So the answer would be 5. 
You might be interested in
Help! I’ll give brainliest!
BigorU [14]

Answer:

d) -2

Step-by-step explanation:

(-1 - 19)/(16 - 6)

-20/10 = -2

4 0
2 years ago
Fifteen SmartCars were randomly selected and the highway mileage of each was noted The analysis yielded a mean of 47 miles per g
laiz [17]

Answer: a. 47 plusminus (1.753*(5 ÷ 3.8730)

Step-by-step explanation:

Confidence interval is written in the form,

(Sample mean - margin of error, sample mean + margin of error)

The sample mean, x is the point estimate for the population mean.

Margin of error = z × s/√n

Where

s = sample standard deviation = 5

n = number of samples = 15

z represents the test statistic

From the information given, the population standard deviation is unknown and the sample size is small, hence, we would use the t distribution to find the test statistic score

In order to use the t distribution, we would determine the degree of freedom, df for the sample.

df = n - 1 = 15 - 1 = 14

Since confidence level = 90% = 0.90, α = 1 - CL = 1 – 0.90 = 0.1

α/2 = 0.1/2 = 0.05

the area to the right of z0.05 is 0.05 and the area to the left of z0.05 is 1 - 0.05 = 0.95

Looking at the t distribution table,

z = 1.753

Margin of error = 1.753(5 ÷ 3.8730)

Confidence interval = 47 ± 1.753(5 ÷ 3.8730)

8 0
3 years ago
What is t²=81. thanks!!
seraphim [82]

Answer:

t= 9, t= -9

Step-by-step explanation:

6 0
3 years ago
6.02 math i need an answer
Katarina [22]
It is A.) or the top left answer.


4 0
3 years ago
Moose Drool Makes Grass More Appetizing Different species can interact in interesting ways. One type of grass produces the toxin
antiseptic1488 [7]

Answer:

Step-by-step explanation:

Hello!

1)

The variable of interest is

X: level of toxin ergovaline on the grass after being treated with Moose saliva.

>The parameter of interest is the population mean of the level of ergovaline on grass after being treated with Moose saliva: μ

The best point estimate for the population mean is the sample mean:

>X[bar]=0.183 Sample average level of ergovaline on the grass after being treated with Moose saliva.

Assuming that the sample comes from a normal population.

>There is no information about the sample size takes to study the effects of the Moose saliva in the grass. Let's say that they worked with a sample of n=20

Using the Student-t you can calculate the CI as:

X[bar] ± t_{n-1;1-\alpha /2} * \frac{S}{\sqrt{n} }

Where   t_{n-1;1-\alpha /2}= t_{19;0.975}= 2.093

0.183 ± 2.093 * (0.016/√20)

[0.175;0.190]

Using a 95% confidence level you'd expect that the interval [0.175;0.190] will contain the true average of ergovaline level of grass after being treated with Moose saliva.

2)

The information of a study that shows how much does the consumption of canned soup increase urinary BPA concentration is:

Consumption of canned soup for over 5 days increases the urinary BPA more than 1000%

75 individuals consumed soup for five days (either canned or fresh)

The study reports that a 95% confidence interval for the difference in means (canned minus fresh) is 19.6 to 25.5 μg/L.

>This experiment is a randomized comparative experiment.

Out of the 75 participants, some randomly eat canned soup and some randomly eaten fresh soup conforming to two separate and independent groups that were later compared.

>The parameter of interest is the difference between the population mean of urinary BPA concentration of people who ate canned soup for more than 5 days and the population mean of urinary BPA concentration of people that ate fresh soup for more than 5 days.

>Using a 95% confidence level you'd expect that the interval 19.6 to 25.5 μg/L would contain the value of the difference between the population mean of urinary BPA concentration of people who ate canned soup for more than 5 days and the population mean of urinary BPA concentration of people that ate fresh soup for more than 5 days.

> If the sample had been larger, then you'd expect a narrower CI, the relationship between the amplitude of the CI and sample size is indirect. Meaning that the larger the sample, the more accurate the estimation per CI is.

3)

> The parameter of interest is Average Long-Term Weight Gain Overeating for just four weeks can increase fat mass and weight over two years later of people with an average age of 26 years old.

> The only way of finding the true value of the parameter is if you were to use the information of the whole population of interest, this is making all swedes with an average age of 26 increase calorie intake by 70% (mostly by eating fast food) and limit their daily activity to a maximum of 5000 steps per day and then measure their weight gain over two years. since this es virtually impossible to do, due to expenses and size of the population, is that the estimation with a small but representative sample is conducted.

>

n= 18

X[bar]= 6.8 lbs

S= 1.2

X[bar] ± t_{n-1;1-\alpha /2} * (S/√n)

6.8 ± 2.101 * (1.2/√18)

t_{n-1;1-\alpha /2}= t_{17;0.975}= 2.101

[6.206;7.394]

With a 95% confidence level, you'd expect that the interval [6.206;7.394] will contain the true value of the Average Long-Term Weight Gain Overeating for just four weeks can increase fat mass and weight over two years later of people with an average age of 26 years old.

>

The margin of error of the interval is

t_{n-1;1-\alpha /2} * (S/√n)= 2.101 * (1.2/√18)= 0.59

With a 95% it is expected that the true value of the Average Long-Term Weight Gain Overeating for just four weeks can increase fat mass and weight over two years later of people with an average age of 26 years old. will be 0.59lbs away from the sample mean.

I hope it helps

8 0
3 years ago
Other questions:
  • A 10- ounce box of cereal cost $3. A 20-ounce box of the same cereal cost $5. A third box of the same cereal cost $8. • Use the
    5·1 answer
  • John built a brick border around his garden that was 4 brick levels high. He started with 480 bricks, and he only had 24 bricks
    8·2 answers
  • The mass of hydrogen -3, tritium, is about 5.01 x 10-27 kg. Write this as a whole number.​
    5·1 answer
  • Let 2x-5y=16 and 5x+3y=9. what is the value of 12x+y
    8·1 answer
  • PLEASE PLEASE PLEASE HELP!!
    11·1 answer
  • Match each vertex in IJL to its corresponding vertex in the dashed triangle.
    9·1 answer
  • This one is really hard
    15·1 answer
  • Can anyone help me please? thanks ^^
    12·1 answer
  • Which expression is equivlant to 1/4n
    15·1 answer
  • 3 The owners intend to store machinery in the undercover storage. Do you think this is wise? Explain.​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!