Answer: 60
Step-by-step explanation:
Let the side lengths of the rectangular pan be m and n. It follows that (m-2) (n-2)=
So, since haf of the brownie pieces are in the interior. This gives 2 (m-2) (n-2) =mn
mn- 2m - 2n- 4 = 0
Then Adding 8 to both sides and applying, we obtain (m-2) (n-2) =8
Since now, m and n are both positive, we obtain (m,n) = (5,12), (6,8) (up to ordering). By inspection, 5. 12 = 60
which maximizes the number of brownies in total which is the greatest number.
Hope that helped! =)
Answer:
Nominal level of measurement
Step-by-step explanation:
The level of measurements used in this study is the nominal level of measurements. The nominal level of measurements involves the use of numbers to help classify the categories in an experiment.
In this case study, values were gotten for each categories which are brown hair, blonde hair, black hair and other hair colors. Thus, the level of measurements used is the nominal level of measurement.
There is something wrong with the calculation because data was gotten for a total of 600 respondents while the mean that was calculated involved only 503 omitting about 97 respondents.
Answer:
The answer is B.
Step-by-step explanation:
See attached image for work.
Answer:
Marginal revenue = R'(Q) = -0.6 Q + 221
Average revenue = -0.3 Q + 221
Step-by-step explanation:
As per the question,
Functions associated with the demand function P= -0.3 Q + 221, where Q is the demand.
Now,
As we know that the,
Marginal revenue is the derivative of the revenue function, R(x), which is equals the number of items sold,
Therefore,
R(Q) = Q × ( -0.3Q + 221) = -0.3 Q² + 221 Q
∴ Marginal revenue = R'(Q) = -0.6 Q + 221
Now,
Average revenue (AR) is defined as the ratio of the total revenue by the number of units sold that is revenue per unit of output sold.

Where Total Revenue (TR) equals quantity of output multiplied by price per unit.
TR = Price (P) × Total output (Q) = (-0.3Q + 221) × Q = -0.3 Q² + 221 Q


∴ Average revenue = -0.3Q + 221