It is given that there are 41 males and 48 females in the small school.
So, the number of ways a male student can be chosen from 41 males is 
Likewise, the number of ways a female student can be chosen from 48 females is
.
Thus, the total number of ways in which 2-person combinations are possible to represent the student body at the PTSAC meetings will be given by:

<em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em>
<em>Hey</em><em>!</em><em>!</em>
<em>Sol</em><em>ution</em><em>,</em>
<em>Radius</em><em>(</em><em>r</em><em>)</em><em>=</em><em> </em><em>6</em><em> </em><em>mm</em>
<em>Circumf</em><em>erence</em><em> </em><em>of</em><em> </em><em>circle</em><em>=</em><em>?</em>
<em>Now</em><em>,</em>
<em>Circumfe</em><em>rence</em><em> </em><em>of</em><em> </em><em>circle</em><em>=</em><em>2</em><em> </em><em>pi</em><em>e</em><em> </em><em>r</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>2</em><em>*</em><em>pi</em><em>*</em><em>6</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>1</em><em>2</em><em> </em><em>pie</em>
<em>So </em><em>the</em><em> </em><em>ans</em><em>wer</em><em> </em><em>is</em><em> </em><em>1</em><em>2</em><em> </em><em>pie.</em>
<em>Hope </em><em>it</em><em> </em><em>helps</em><em>.</em><em>.</em><em>.</em>
<em>Good</em><em> </em><em>luck</em><em> </em><em>on</em><em> </em><em>your</em><em> </em><em>assignment</em>
<em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em><em>_</em>
Answer:
The 95% confidence interval for the population mean daily protein intake is between 69.97g and 84.03g.
Step-by-step explanation:
We have that to find our
level, that is the subtraction of 1 by the confidence interval divided by 2. So:

Now, we have to find z in the Ztable as such z has a pvalue of
.
So it is z with a pvalue of
, so 
Now, find M as such

In which
is the standard deviation of the population and n is the size of the sample.

The lower end of the interval is the sample mean subtracted by M. So it is 77 - 7.03 = 69.97g.
The upper end of the interval is the sample mean added to M. So it is 77 + 7.03 = 84.03g.
The 95% confidence interval for the population mean daily protein intake is between 69.97g and 84.03g.
One way of doing this would be to look at the πr² as if it were a single term. Then we could divide both sides by πr², which leaves h = V/πr².